Vol. 104
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-05-12
Hexagon Shape SIW Bandpass Filter with CSRRs Using Artificial Neural Networks Optimization
By
Progress In Electromagnetics Research Letters, Vol. 104, 47-55, 2022
Abstract
A dual-band hexagon shape substrate integrated waveguide (SIW) based band pass filter with single loop complementary spilt ring resonators (CSRRs) is introduced in this paper. The design parameters of this filter are optimized by using artificial neural networks (ANNs). Especially error back propagation multilayer perceptron (EBP-MLP) neural network with Levenberg-Marquart (LM) algorithm is used. A physical prototype of the proposed model is fabricated and tested. In the lower passband from 10.2 to 10.6 GHz, the insertion loss is about -0.8 dB with a fractional bandwidth of 3.85%, and in the upper passband from 12.11 to 13.31 GHz, the insertion loss is about -0.8 dB with a fractional bandwidth of 9.56%. It is observed that the insertion loss is same in both the passbands. The obtained experimental results are in good agreement with the estimated results using full-wave analysis and ANN optimization.
Citation
Ranjit Kumar Rayala, and Singaravelu Raghavan, "Hexagon Shape SIW Bandpass Filter with CSRRs Using Artificial Neural Networks Optimization," Progress In Electromagnetics Research Letters, Vol. 104, 47-55, 2022.
doi:10.2528/PIERL22031901
References

1. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and Waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820

2. Ananya, P., P. Athira, and S. Raghavan, "Miniaturized band pass filter in substrate integrated waveguide technology," International Journal of Engineering & Technology, Vol. 7, No. 3.13, 95-98, 2018.
doi:10.14419/ijet.v7i3.13.16332

3. Krushna Kanth, V. and S. Raghavan, "EM design and analysis of a substrate integrated waveguide based on a frequency-selective surface for millimeter wave radar application," J. Comput. Electron., Vol. 18, 189-196, 2019.
doi:10.1007/s10825-018-1272-z

4. Krushna Kanth, V. and S. Raghavan, "Ultra thin wide band slot and patch FSS elements with sharp band edge characteristics," International Journal of Electronics, Vol. 107, 1365-1385, 2020.
doi:10.1080/00207217.2020.1726493

5. Krushna Kanth, V. and S. Raghavan, "A novel Faraday-cage inspired FSS shield for stable resonance performance characteristics," International Journal of Electronics Letters, Vol. 8, 60-69, 2020.
doi:10.1080/21681724.2018.1545926

6. Hamidkhani, M., R. Sadeghi, and M. Karimi, "Dual-band high Q-factor complementary split-ring resonators using substrate integrated waveguide method and their applications," Journal of Electrical and Computer Engineering, Vol. 2019, 11, 2019.

7. Hao, Z., K. Wei, and W. Wen, "Dual-band substrate integrated waveguide bandpass filter utilizing complementary split ring resonators," Electronics Letters, Vol. 54, 85-87, 2018.

8. Park, W.-Y. and S. Lim, "Bandwidth tunable and compact BandPass Filter (BPF) using Complementary Split Ring Resonators (CSRRS) on Substrate Integrated Waveguide (SIW)," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2407-2417, 2010.
doi:10.1163/156939310793675727

9. Li, D., J.-A. Wang, Y. Yu, Y. Liu, Z. Chen, and L. Yang, "Substrate integrated waveguide-based complementary split-ring resonator and its arrays for compact dual-wideband bandpass filter design," Int. J. RF Microw. Comput. Aided Eng., Vol. 31, e22504, 2021.

10. Chaudhury, S. S., S. Awasthi, and R. K. Singh, "Dual passband filter based on semi circular cavity substrate integrated waveguide using complementary split ring resonators," IEEE Applied Electromagnetics Conference (AEMC), 1-2, Aurangabad, India, 2017.

11. Yan, T. and X.-H. Tang, "Substrate integrated waveguide dual-band bandpass filter with complementary modified split-ring resonators," IEEE International Wireless Symposium (IWS 2015), 1-4, Shenzhen, China, 2015.

12. Geng, Q. F., H. J. Guo, Y. Y. Zhu, W. Huang, S. S. Deng, and T. Yang, "A novel dual-band filter based on single-cavity CTSRR loaded triangular substrate-integrated waveguide," International Journal of Microwave and Wireless Technologies, Vol. 11, 894-898, 2019.
doi:10.1017/S1759078719000679

13. Wei, F., H. J. Yue, J.-P. Song, H. Y. Kang, and B. Li, "Half-mode SIW BPF loaded with S-shaped complementary spiral resonators," Progress In Electromagnetics Research Letters, Vol. 77, 13-18, 2018.
doi:10.2528/PIERL18032604

14. Chen, X.-G., G. H. Li, Z. Shi, and S. D. Feng, "Compact SICC dual-band and UWB filters using multimode technology," Progress In Electromagnetics Research Letters, Vol. 92, 69-74, 2020.
doi:10.2528/PIERL20031902

15. Zhang, Q.-J., K. C. Gupta, and V. K. Devabhaktuni, "Artificial neural networks for RF and microwave design - From theory to practice," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1339-1350, 2003.
doi:10.1109/TMTT.2003.809179

16. Rayas-Sanchez, J. E., "EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 420-435, Jan. 2004.
doi:10.1109/TMTT.2003.820897

17. Angiulli, G., E. Arnieri, D. De Carlo, and G. Amendola, "Feed forward neural network characterization of circular SIW resonators," IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, USA, 2008.

18. Tabatabaeian, Z. S. and M. H. Neshat, "Design investigation of an X-band SIW H-plane band pass filter with improved stop band using neural network optimization," Applied Computational Electromagnetics Society Journal, Vol. 30, No. 10, 1083-1088, 2015.

19. Du, G.-Y. and L. Jin, "Neural network of calibrated coarse model and application to substrate integrated waveguide filter design," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 10, e22374, 2020.
doi:10.1002/mmce.22374

20. Amir, B. and B. S. Masoud, "Optimal design of double folded stub microstrip filter by neural network modelling and particle swarm optimization," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 11, 204-213, 2012.

21. Xiao, L., W. Shao, F. Jin, B. Wang, W. T. Joines, and Q. H. Liu, "Semi supervised radial basis function neural network with an effective sampling strategy," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, 1260-1269, 2020.
doi:10.1109/TMTT.2019.2955689