1. Waterman, P. C. and R. Truell, "Multiple scattering of waves," J. of Math. Phy., Vol. 2, No. 4, 512-537, 1961.
doi:10.1063/1.1703737
2. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
3. Mishchenko, M. I., G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, "T-matrix theory of electromagnetic scattering by particles and its applications: A comprehensive reference database," J. Quant. Spectrosc. Radiat. Transfer, Vol. 88, No. 1-3, 357-406, 2004.
doi:10.1016/j.jqsrt.2004.05.002
4. Koc, S. and W. C. Chew, "Calculation of acoustical scattering from a cluster of scatterers," J. Acoust. Soc. Am., Vol. 103, No. 2, 721-734, 1998.
doi:10.1121/1.421231
5. Chew, W. C., L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, "A generalized recursive algorithm for wave-scattering solutions in two dimensions," IEEE Trans. Microwave Theory and Techniques, Vol. 40, No. 4, 716-723, 1992.
doi:10.1109/22.127521
6. Wang, Y.-M. and W. Chew, "A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres," IEEE Trans. Ant. Prop., Vol. 41, No. 12, 1633-1639, 1993.
doi:10.1109/8.273306
7. Chew, W. C., C. Lu, and Y. Wang, "Efficient computation of three-dimensional scattering of vector electromagnetic waves," JOSA A, Vol. 11, No. 4, 1528-1537, 1994.
doi:10.1364/JOSAA.11.001528
8. Chew, W. and C. Lu, "The recursive aggregate interaction matrix algorithm for multiple scatterers," IEEE Trans. on Ant. and Prop., Vol. 43, No. 12, 1483-1486, 1995.
doi:10.1109/8.475942
9. Gumerov, N. A. and R. Duraiswami, "Computation of scattering from N spheres using multipole reexpansion," J. Acoust. Soc. Am., Vol. 112, No. 6, 2688-2701, 2002.
doi:10.1121/1.1517253
10. Mackowski, D. W. and M. I. Mishchenko, "A multiple sphere T-matrix fortran code for use on parallel computer clusters," J. Quant. Spec. and Rad. Trans., Vol. 112, No. 13, 2182-2192, 2011.
doi:10.1016/j.jqsrt.2011.02.019
11. Egel, A., L. Pattelli, G. Mazzamuto, D. S. Wiersma, and U. Lemmer, "Celes: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres," J. Quant. Spec. and Rad. Trans., Vol. 199, 103-110, 2017.
doi:10.1016/j.jqsrt.2017.05.010
12. Siqueira, P. R. and K. Sarabandi, "T-matrix determination of effective permittivity for three-dimensional dense random media," IEEE Trans. Ant. Prop., Vol. 48, No. 2, 317-327, 2000.
doi:10.1109/8.833082
13. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Ant. Prop., Vol. 56, No. 11, 3440-3451, 2008.
doi:10.1109/TAP.2008.2005471
14. Um, J. and G. M. McFarquhar, "Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals," J. Quant. Spec. and Rad. Trans., Vol. 127, 207-223, 2013.
doi:10.1016/j.jqsrt.2013.05.020
15. Liao, D. and T. Dogaru, "Full-wave scattering and imaging characterization of realistic trees for FOPEN sensing," IEEE GRSL, Vol. 13, No. 7, 957-961, 2016.
16. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206
17. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. on Elec. Comp., Vol. 47, No. 4, 763-773, 2005.
18. Mackowski, D. W., "Analysis of radiative scattering for multiple sphere configurations," Proc. Roy. Soc., Ser. A, Math. and Phys. Sci., Vol. 433, No. 1889, 599-614, 1991.
19. Chew, W. C., "Recurrence relations for three-dimensional scalar addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 1-4, 133-142, 1992.
doi:10.1163/156939392X01075
20. Chew, W. C. and Y. Wang, "Efficient ways to compute the vector addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 5, 651-665, 1993.
doi:10.1163/156939393X00787
21. Yaghjian, A. D., "Sampling criteria for resonant antennas and scatterers," J. App. Phys., Vol. 79, No. 10, 7474-7482, 1996.
doi:10.1063/1.362683
22. Woodbury, M. A., Inverting Modified Matrices, Statistical Research Group, 1950.
23. Hager, W. W., "Updating the inverse of a matrix," SIAM Rev., Vol. 31, No. 2, 221-239, 1989.
doi:10.1137/1031049
24. Tsang, L., J. Kong, and K. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, Wiley Interscience, 2000.
doi:10.1002/0471224286
25. Haynes, M. S., Waveport Scattering Library, Jet Propulsion Laboratory, 2021, https://doi.org/10.48588/JPL.HE9D-BA55, https://github.com/nasajpl/Waveport.
26. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, Vol. 2, IEEE Press, 1998.
27. Fenni, I., Z. S. Haddad, H. Roussel, K.-S. Kuo, and R. Mittra, "A computationally efficient 3-D full-wave model for coherent EM scattering from complex-geometry hydrometeors based on MoM/CBFM-enhanced algorithm," IEEE TGRS, Vol. 56, No. 5, 2674-2688, 2017.
28. Brand, M., "Incremental singular value decomposition of uncertain data with missing values," Euro. Conf. Comp. Vis., 707-720, Springer, 2002.
29. Baker, C. G., K. A. Gallivan, and P. Van Dooren, "Low-rank incremental methods for computing dominant singular subspaces," Lin. Alg. App., Vol. 436, No. 8, 2866-2888, 2012.
doi:10.1016/j.laa.2011.07.018