Vol. 104
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-06-21
A Triple Band Artificial Magnetic Conductor: Design & Analytical Model
By
Progress In Electromagnetics Research Letters, Vol. 104, 161-168, 2022
Abstract
A triple band artificial magnetic conductor (AMC) featuring zero reflection phase at 1.18 GHz, 1.59 GHz, and 2.45 GHz is designed and modeled. A square patch is used to achieve the first resonance. The other two resonance frequencies are generated by two square slots inserted in the first patch. All the three resonant frequencies are adjusted independently of each other and easily predicted by the developed analytical model. A good agreement between electromagnetic simulation and analytical results is obtained with a resonance frequency shift lower than 120 MHz.
Citation
Amina Fattouche, Lila Mouffok, Sami Hebib, and Ali Mansoul, "A Triple Band Artificial Magnetic Conductor: Design & Analytical Model," Progress In Electromagnetics Research Letters, Vol. 104, 161-168, 2022.
doi:10.2528/PIERL22030804
References

1. Sievenpiper, P., L. Zhang, R. F. J Broas, et al. "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999, DOI: 10.1109/22.798001.
doi:10.1109/22.798001

2. Alibakhshikenari, M., et al. "Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems," Radio Science, Vol. 54, No. 11, 1067-1075, 2019.
doi:10.1029/2019RS006871

3. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Study on isolation and radiation behaviours of a 34 × 34 array-antennas based on SIW and metasurface properties for applications in terahertz and over 125-300 GHz," Optik, Vol. 206, Art. No. 163222, Mar. 2020.

4. Alibakhshikenari, M., B. S. Virdee, P. Shukla, et al. "Metamaterial-Inspired antenna array for application in Microwave breast imaging systems for tumor detection," IEEE Access, Vol. 8, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672

5. Ge, Y., Y. J. Zhao, and J. Q. Chen, "Wideband RCS reduction and gain enhancement for a patch antenna with broadband AMC structure," Radio Engineering, Vol. 2, No. 1, 45-52, 2019.

6. Ren, Y., X. Guo, and C. Li, "Broadband circular polarized antenna loaded with AMC structure," Progress In Electromagnetics Research Letters, Vol. 76, 113-119, 2018.
doi:10.2528/PIERL18032002

7. Sang, X.-Y., C. Yang, T.-L. Zhang, Z.-H. Yan, and R.-N. Lian, "Broadband and gain enhanced bowtie antenna with AMC ground," Progress In Electromagnetics Research Letter, Vol. 61, 25-30, 2016.
doi:10.2528/PIERL16042606

8. Li, M., Q. L. Li, B. Wang, C. F. Zhou, and S. W. Cheung, "A low-profile dual-polarized dipole antenna using wideband AMC re ector," IEEE Trans. Antennas Propagation, Vol. 66, No. 5, 2610-2615, May 2018.
doi:10.1109/TAP.2018.2806424

9. Volkov, A. P., V. V. Kakshin, I. Yu. Ryzhov, K. V. Kozlov, and A. Yu. Grinev, "Wideband low-profile dual-polarized antenna with AMC re ector," Progress In Electromagnetics Research Letter, Vol. 88, 15-20, 2020.
doi:10.2528/PIERL19100709

10. Ta, S. X. and I. Park, "Dual-band low-profile crossed asymmetric dipole antenna on dual-band AMC structure," IEEE Antennas Wireless Propagation Lett., Vol. 13, 587-590, 2014.

11. Chamani, Z. and S. Jahanbakht, "Improved performance of double-T monopole antenna for 2.4/5.6 GHz dual-band WLAN operation using artificial magnetic conductors," Progress In Electromagnetics Research M, Vol. 61, 205-213, 2017.
doi:10.2528/PIERM17090301

12. Kumar, P. and D. Ghosh, "High-gain dual-band antenna with AMC surface for satellite communications," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 5, 604-619, Nov. 2020.

13. Sarrazin, J., A. C. Lepage, and X. Begaud, "Dual-band artificial magnetic conductor," Appl. Phys. A, Vol. 109, No. 4, 1075-1080, 2012.
doi:10.1007/s00339-012-7409-1

14. Dewan, R., S. K. A. Rahim, S. F. Ausordin, and H. U. Iddi, "Design of triple band artificial magnetic conductor," IEEE Asia-Pacific Conference on Applied Electromagnetics, 253-256, 2012.

15. Fneish, Z., F. Mazeh, H. Ayad, A. A. Khalil, G. Faour, M. Fadlallah, and J. Jomaah, "Design of a miniaturized dual wide band and triband artificial magnetic conductor in LTE regions," 2017 Sensors Networks Smart and Emerging Technologies (SENSET), 978-1-5090-601, IEEE, 2017.

16. Ghosh, A., T. Mandal, and S. Das, "Design of triple band slot-patchantenna with improved gain using triple band artificial magnetic conductor," Radio Engineering, Vol. 25, No. 3, 442-448, 2016.

17. Ghosh, A., V. Kumar, G. Sen, and S. Das, "Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1400-1406, 2018.
doi:10.1049/iet-map.2017.0815

18. Ihsan, R. R. and A. Munir, "Utilization of artificial magnetic conductor for bandwidth enhancement of square patch antenna," 7th International Conference on Telecommunication Systems, Services and Applications, 192-195, Bali, Indonesia, 2012, DOI: 10.1109/TSSA.2012.6366049.

19. Capolino, F., Theory and Phenomena of Metamaterials, Chapter 32, 32-1, Taylor & Francis, 2009.

20. Suraperwata, A. V., L. Olivia, and A. Munir, "Inductance and capacitance reformulation of square patch-based artificial magnetic conductor," Proc. 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 187-191, 2012.