Vol. 104
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-05-11
Small Formfactor Phased Array for Simultaneous Spatial and Channel Diversity Communications
By
Progress In Electromagnetics Research Letters, Vol. 104, 37-46, 2022
Abstract
A high frequency device design and simulation results are reported for an 8 x 8 phased array of unit cells. Each unit cell comprises a (3 x 3) sub-array of 1/4 wave rod monopole radiators. Each unit cell is the basic building block that can be arranged to form 9 interpenetrating arrays. Each interpenetrating array comprises an independently addressable 8 x 8 array of 1/4 wave rod monopole radiators that fits into the lateral space of a single 8 x 8 array of patch radiators but can operate on 9 independent radio frequency channels within the same contiguous communication band without interference and can direct each radio frequency channel into independent directions simultaneously. The beamformer architecture, operation principle, and simulation results are presented and discussed, and an outline of its construction based on 2.5D integration is presented.
Citation
Daniel Guidotti, Binbin Yang, Muhammad S. Omar, Shang-Jen Su, Yahya M. Alfadhli, Gee-Kung Chang, and Xiaoli Ma, "Small Formfactor Phased Array for Simultaneous Spatial and Channel Diversity Communications," Progress In Electromagnetics Research Letters, Vol. 104, 37-46, 2022.
doi:10.2528/PIERL22030504
References

1. Aburakhia, S. A., E. F. Badran, and D. A. Mohamed, "Distribution of the PAPR for real-valued OFDM signals," 4th International Conference on Information Technology (ICIT 2009), Al-Zaytoonah University, Jordon, June 2009, doi: 10.13140/2.1.1212.7680.

2. Mallik, R. K. and R. Murch, "Exact expressions for PAPR statistics in low number subcarrier multicarrier systems," IEEE Wireless Communications Letters, Vol. 9, 930-942, 2020, doi: 10.1109/LWC.2020.2974720.
doi:10.1109/LWC.2020.2974720

3. Abulgasem, S., F. Tubbal, R. Raad, P. I. Theoharis, S. Lu, and S. Iranmanesh, "Antenna designs for CubeSats: A review," IEEE Access, Vol. 9, 45289-45324, 2021, doi: 10.1109/ACCESS.2021.3066632.
doi:10.1109/ACCESS.2021.3066632

4. Henault, S. and Y. M. M. Antar, "Unifying the theory of mutual coupling compensation in antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 57, 104-122, 2015, doi: 10.1109/MAP.2015.2414514.
doi:10.1109/MAP.2015.2414514

5. Saeed, N., A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, "CubeSat communications: Recent advances and future challenges," IEEE Communications Surveys & Tutorials, Vol. 22, 1839-1862, 2020, doi: 10.1109/COMST.2020.2990499.
doi:10.1109/COMST.2020.2990499

6. Henault, S., "Analysis of planar array of 64 monopoles for over-the-horizon radar,", Scienti c Report DRDC-RDDC-2018-R233, Defence Research and Development Canada, January 2019.

7. Henault, S., "Analysis of planar array of 256 monopoles for over-the-horizon radar,", Scienti c Report DRDC-RDDC-2020-R123, Defence Research and Development Canada, November 2020.

8. Henault, S., "Improving auroral clutter rejection robustness in over-the-horizon radar," 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 2018, doi: 10.1109/ANTEM.2018.8573001.