Vol. 104
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-04-29
An Electronically 1-Bit Reconfigurable Beam-Steering Reflectarray Antenna of 12×12 Units Integrated with PIN Diodes
By
Progress In Electromagnetics Research Letters, Vol. 104, 7-13, 2022
Abstract
An electronically reconfigurable reflectarray antenna of 12 × 12 units is presented in this paper. The element consists of a slotted square patch and a gapped metal square ring. PIN diodes are loaded on slotted square patches, which can be electronically controlled to produce two states with 180˚ phase difference. A reflectarray prototype is fabricated and experimentally studied. Experimental results agree well with the full-wave simulations by Ansys HFSS, and scanning beams within ±45˚ range are obtained with a maximum aperture efficiency of 14.9% at 5.8 GHz. 1-dB bandwidth is 9.9%, and 3-dB bandwidth is 19.1%.
Citation
Weixiong Luo, Shixing Yu, Na Kou, Zhao Ding, and Zhengping Zhang, "An Electronically 1-Bit Reconfigurable Beam-Steering Reflectarray Antenna of 12×12 Units Integrated with PIN Diodes," Progress In Electromagnetics Research Letters, Vol. 104, 7-13, 2022.
doi:10.2528/PIERL22030501
References

1. Berry, D., R. Malech, and W. Kennedy, "The reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 6, 645-651, 1963.
doi:10.1109/TAP.1963.1138112

2. Li, Y. and A. Abbosh, "Reconflgurable reflectarray antenna using single-layer radiator controlled by PIN diodes," IET Microw. Antennas Propag., Vol. 9, 664-671, 2015.
doi:10.1049/iet-map.2014.0227

3. Perruisseau-Carrier, J. and A. K. Skrivervik, "Monolithic mems-based reflectarray cell digitally reconfigurable over a 360˚ phase range," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5585-5595, Sept. 2021.
doi:10.1109/TAP.2021.3069551

4. Wu, F., R. Lu, J. Wang, Z. H. Jiang, W. Hong, and K.-M. Luk, "A circularly polarized 1 bit electronically reconfigurable reflectarray based on electromagnetic element rotation," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5585-5595, Sept. 2021.
doi:10.1109/TAP.2021.3069551

5. Baracco, J.-M., P. Ratajczak, P. Brachat, J.-M. Fargeas, and G. Toso, "Ka-band reconfigurable reflectarrays using varactor technology for space applications: A proposed design," IEEE Antennas and Propagation Magazine, Vol. 64, No. 1, 27-38, Feb. 2022.
doi:10.1109/MAP.2021.3133502

6. Pan, X., F. Yang, S. Xu, and M. Li, "A 10 240-element reconfigurable reflectarray with fast steerable monopulse patterns," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 173-181, Jan. 2021.
doi:10.1109/TAP.2020.3008623

7. Yang, H., et al. "A 1-bit 10×10 reconfigurable reflectarray antenna: Design, optimization, and experiment," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2246-2254, Jun. 2016.
doi:10.1109/TAP.2016.2550178

8. Xi, B., Y. Xiao, K. Zhu, Y. Liu, H. Sun, and Z. Chen, "1-bit wideband reconfigurable reflectarray design in Ku-band," IEEE Access, Vol. 10, 4340-4348, 2022.
doi:10.1109/ACCESS.2021.3117693

9. Zhou, S.-G., et al. "A wideband 1-Bit reconfigurable reflectarray antenna at Ku-band," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 3, 566-570, Mar. 2022.
doi:10.1109/LAWP.2021.3138438

10. Yu, S., L. Li, and N. Kou, "One-bit digital coding broadband reflectarray based on fuzzy phase control," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1524-1527, 2017.
doi:10.1109/LAWP.2017.2647743

11. Han, J., L. Li, G. Liu, Z. Wu, and Y. Shi, "A wideband 1 bit 12×12 reconfigurable beam-scanning reflectarray: Design, fabrication, and measurement," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1268-1272, 2019.
doi:10.1109/LAWP.2019.2914399

12. Wang, Z., et al. "1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6806-6810, Sept. 2020.
doi:10.1109/TAP.2020.2975265

13. Riel, M. and J.-J. Laurin, "Design of an electronically beam scanning reflectarray using aperture-coupled elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1260-1266, 2007.
doi:10.1109/TAP.2007.895586

14. Costanzo, S., F. Venneri, A. Raffo, and G. Di Massa, "Dual-layer single-varactor driven reflectarray cell for broad-band beam-steering and frequency tunable applications," IEEE Access, Vol. 6, 71793-71800, 2018.
doi:10.1109/ACCESS.2018.2882093