Vol. 103
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-04-20
Contribution to the Study, Design and Production of a Miniaturized Adjustable Phase Coupler for Beam Steering Applications
By
Progress In Electromagnetics Research Letters, Vol. 103, 143-150, 2022
Abstract
In this article, we present the design and production of a miniaturized adjustable coupler with optimized dimensions of 48 mm in length and 31 mm in width. This coupler offers the possibility of covering all phases [0, 45°, 90°, 120° and 180°]. To be able to achieve this, the proposed coupler can be adjusted through the implementation of six SMV2019-079LF diodes which allow shifting from one phase to another. This new flexibility, in terms of phase shifting, can greatly improve the multifunctional use of this small and efficient coupler, in particular, in comparison with previously improved phase shifting couplers which are limited to one or two phases. The high performance and efficiency have been verified by the results obtained by simulation and measurement.
Citation
Asmae Mimouni, Moustapha El Bakkali, and Naima Amar Touhami, "Contribution to the Study, Design and Production of a Miniaturized Adjustable Phase Coupler for Beam Steering Applications," Progress In Electromagnetics Research Letters, Vol. 103, 143-150, 2022.
doi:10.2528/PIERL22022601
References

1. Kim, S., S. Yoon, Y. Lee, and H. Shin, "A miniaturized Butler matrix based switched, beamforming antenna system in a two-layer hybrid stackup substrate for 5G applications," Electronics, Vol. 8, 1232, 2019, doi: 10.3390/electronics8111232.
doi:10.3390/electronics8111232

2. Han, K., W. Li, and Y. Liu, "Flexible phase difference of 4x4 Butler matrix without phase-shifters and crossovers," International Journal of Antennas and Propagation, Vol. 2019, Article ID 4703161, 7 pages, 2019, https://doi.org/10.1155/2019/4703161.

3. Hao, Z. C., W. Hong, J. X. Chen, H. X. Zhou, and K. Wu, "Single-layer substrate integrated waveguide directional couplers," IEE Proc. Microwave Antennas Propag., Vol. 153, No. 5, 426-431, Oct. 2006.
doi:10.1049/ip-map:20050171

4. Babale, S. A., S. K. Abdul Rahim, O. A. Barro, M. Himdi, and M. Khalily, "Single layered 4 x 4 Butler matrix without phase-shifters and crossovers," IEEE Access, Vol. 6, 77289-77298, 2018.
doi:10.1109/ACCESS.2018.2881605

5. Wang, Y., K. Ma, N. Yan, and L. Li, "Design of broad band SIW couplers with 45◦ and 90◦ phase difference," Proceedings of iWEM 2014, Sapporo, Japan, 2014.

6. Liu, H., X. Li, Y. Guo, S.-J. Fang, and Z. Wang, "Design of filtering coupled-line trans-directional coupler with broadband bandpass response," Progress In Electromagnetics Research M, Vol. 100, 163-173, 2021.
doi:10.2528/PIERM20110405

7. Muquaddar, A., K. K. Sharma, and R. P. Yadav, "Design and analysis of a stub-less capacitive loaded branch line coupler with improved bandwidth performance," Progress In Electromagnetics Research M, Vol. 95, 105-114, 2020.

8. Liu, H., X. Wang, T. Zhang, S.-J. Fang, and Z. Wang, "Design of full-360◦ reflection-type phase shifter using trans-directional coupler with multi-resonance loads," Progress In Electromagnetics Research Letters, Vol. 101, 63-70, 2021.
doi:10.2528/PIERL21091802

9. "Microwave power dividers and couplers tutorial," http://www.markimicrowave.com/menus/appno- tes/Microwave Power Dividers and Couplers Primer.pdf, Marki Microwave, accessed Jan. 2012.

10. Pozar, D., Microwave Engineering, 3rd Edition, Wiley, New York, 2005.

11., https://www.keysight.com/zz/en/home.html, Jan. 2022.

12. Moubadir, M., H. Aziz, N. A. Touhami, and A. Mohamed, "A miniaturized branch-line hybrid coupler microstrip for long term evolution applications," Procedia Manufacturing, Vol. 22, 491-497, 2018.
doi:10.1016/j.promfg.2018.03.075

13. Dinh, T. A. N., L. H. Duc, D. B. Gia, and D. Dancila, "A design of wideband high-power 3-dB quadrature coupler using defected ground structure for status data transmitting system," Bulletin of Electrical Engineering and Informatics, Vol. 9, No. 1, Feb. 2020.
doi:10.11591/eei.v9i1.1699