Vol. 109
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-06
Multifunction Cross Polarization Converter Based on Ultra-Thin Transmissive Chiral Metasurface in C and X Bands
By
Progress In Electromagnetics Research M, Vol. 109, 205-216, 2022
Abstract
Polarization is an essential feature of electromagnetic (EM) waves, and the variety and simplicity of polarization conversion have substantial demands in wireless systems. Metasurfaces, two-dimensional artificial electromagnetic structures, are emerging as novel modulation solutions for EM waves. In this work, a multifunction polarization converter based on a transmissive metasurface (MPC-TMS) is suggested. This planar structure is made up of a copper-clad dielectric substrate with top and bottom orthogonal slotted sheets joined by a metal via. With frequency selectivity, x- and y-linear cross-polarization transformations are efficiently achieved between 8.04-8.82 GHz (9.25%) and 7.04-9.07 GHz (25.19%), respectively. Meanwhile, the presented microstructure is capable of rotating a circularly polarized incident wave into its opposite handedness from 8.16 to 8.87 GHz (8.46%). Both peak transmission efficiency and the polarization conversion ratio exceed 0.95 simultaneously. In addition, resonance superposition and coupling effects are investigated to explain the operating mechanism. This microstructure not only has a simple construction with an ultra-thin thickness (0.06λ), but also reveals superiorities in bandwidth, transmission, and efficiency. To verify the above quadruple polarization conversion, measurement has been implemented, and the results are reasonably accordant with simulation, suggesting that the low-profile converter is conducive to future telecommunication design where polarization diversity is needed.
Citation
Jiayu Yu, Qiu-Rong Zheng, Bin Zhang, Huan Jiang, and Kun Zou, "Multifunction Cross Polarization Converter Based on Ultra-Thin Transmissive Chiral Metasurface in C and X Bands," Progress In Electromagnetics Research M, Vol. 109, 205-216, 2022.
doi:10.2528/PIERM22021201
References

1. Doumanis, E., G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, "Anisotropic impedance surfaces for linear to circular polarization conversion," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 212-219, 2012.
doi:10.1109/TAP.2011.2167920

2. Zhao, J., J. Song, Y. Zhou, R. Zhao, and J. Zhou, "Dual-polarization, tunable breaking window in the polarization conversion pass band in a terahertz dirac semimetal-based metamaterial," IEEE Photon. J., Vol. 11, No. 6, 1-9, 2019.

3. Fernandez, O., A. Gomez, J. Basterrechea, and A. Vegas, "Reciprocal circular polarization handedness conversion using chiral metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2307-2310, 2017.
doi:10.1109/LAWP.2017.2715830

4. Jiang, X., Z. Zhang, Y. Li, and Z. Feng, "A planar wideband dual-polarized array for active antenna system," IEEE Antennas Wireless Propag. Lett., Vol. 13, 544-547, 2014.
doi:10.1109/LAWP.2014.2311583

5. Van Den Broek, G. and J. Van Der Vooren, "On the reflection properties of periodically supported metallic wire gratings with rectangular mesh showing small sag," IEEE Trans. Antennas Propag., Vol. 19, 109-113, 1971.
doi:10.1109/TAP.1971.1139874

6. Liu, W., Y. Li, Z. Zhang, and Z. Feng, "A bidirectional array of the same left-handed circular polarization using a special substrate," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1543-1546, 2013.
doi:10.1109/LAWP.2013.2292587

7. Zhou, H., W. Hong, L. Tian, and M. Jiang, "A polarization-rotating SIW reflective surface with two sharp band edges," IEEE Antennas Wireless Propag. Lett., Vol. 15, 130-134, 2016.
doi:10.1109/LAWP.2015.2433174

8. Arnieri, E., F. Greco, L. Boccia, and G. Amendola, "A SIW-based polarization rotator with an application to linear-to-circular dual-band polarizers at K-/Ka-band," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3730-3738, 2020.
doi:10.1109/TAP.2020.2963901

9. Muhammad, S. A., R. Sauleau, L. Le Coq, and H. Legay, "Self-generation of circular polarization using compact Fabry-Perot cavity antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 907-910, 2011.
doi:10.1109/LAWP.2011.2166989

10. Xie, P., G. Wang, H. Li, J. Liang, and X. Gao, "Circularly polarized Fabry-Perot antenna employing a receiver-transmitter polarization conversion metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3213-3218, 2020.
doi:10.1109/TAP.2019.2950811

11. Pitilakis, A., O. Tsilipakos, F. Liu, K. M. Kossifos, A. C. Tasolamprou, D.-H. Kwon, M. S. Mirmoosa, D. Manessis, N. V. Kantartzis, C. Liaskos, M. A. Antoniades, J. Georgiou, C. M. Soukoulis, M. Kafesaki, and S. A. Tretyakov, "A multi-functional reconfigurable metasurface: Electromagnetic design accounting for fabrication aspects," IEEE Trans. Antennas Propag., Vol. 69, No. 3, 1440-1454, 2021.
doi:10.1109/TAP.2020.3016479

12. Shen, C., R. Xu, J. Sun, Z. Wang, and S. Wei, "Metasurface-based holographic display with all-dielectric meta-axilens," IEEE Photon. J., Vol. 13, No. 5, 1-5, 2021.
doi:10.1109/JPHOT.2021.3107442

13. Kato, Y., S. Morita, H. Shiomi, and A. Sanada, "Ultrathin perfect absorbers for normal incident waves using dirac cone metasurfaces with critical external coupling," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 4, 383-386, 2020.
doi:10.1109/LMWC.2020.2979708

14. Zhou, G.-N., B.-H. Sun, Q.-Y. Liang, Y.-H. Yang, and J.-H. Lan, "Beam-deflection short backfire antenna using phase-modulated metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 546-551, 2020.
doi:10.1109/TAP.2019.2934832

15. Murugesan, A., D. Natarajan, and K. T. Selvan, "Low-cost, wideband checkerboard metasurfaces for monostatic RCS reduction," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 4, 493-497, 2021.
doi:10.1109/LAWP.2021.3054863

16. Dalgac, S., M. Bakir, F. Karadag, M. Karaaslan, O. Akgol, E. Unal, and C. Sabah, "Microfluidic sensor applications by using chiral metamaterial," Modern Physics Letters B, Vol. 34, No. 5, 2020.
doi:10.1142/S0217984920500311

17. Dalgac, S., M. Bakir, F. Karadag, E. Unal, M. Karaaslan, and C. Sabah, "Characterization of chiral metamaterial sensor with high sensitivity," Optik, Vol. 202, 2020.

18. Dalgac, S., F. Karadag, M. Bakir, O. Akgol, E. Unal, and M. Karaaslan, "Chiral metamaterial-based sensor applications to determine quality of car lubrication oil," Transactions of the Institute of Measurement and Control, Vol. 43, No. 7, 1640-1649, 2021.
doi:10.1177/0142331220976104

19. Xu, P., W. X. Jiang, S. Y. Wang, and T. J. Cui, "An ultrathin cross-polarization converter with near unity efficiency for transmitted waves," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4370-4373, 2018.
doi:10.1109/TAP.2018.2839972

20. Gao, X., X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392

21. Murtaza, M., A. Rashid, and F. A. Tahir, "A highly efficient low-cost reflective anisotropic metasurface for linear to linearly cross- and circular-polarization conversion," Microw. Opt. Technol. Lett., Vol. 63, No. 5, 1346-1353, 2020.
doi:10.1002/mop.32748

22. Han, B., S. Li, X. Cao, J. Han, L. Jidi, and Y. Li, "Dual-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously," AIP Advances, Vol. 10, No. 12, 2020.
doi:10.1063/5.0034762

23. Meng, C., P. C. V. Thrane, F. Ding, J. Gjessing, M. Thomaschewski, C. Wu, C. Dirdal, and S. I. Bozhevolnyi, "Dynamic piezoelectric MEMS-based optical metasurfaces," Science Advances, Vol. 7, No. 26, 2021.
doi:10.1126/sciadv.abg5639

24. Cheng, Y. Z., W. Y. Li, and X. S. Mao, "Triple-band polarization angle independent 90 degrees polarization rotator based on Fermat's spiral structure planar chiral metamaterial," Progress In Electromagnetics Research, Vol. 165, 35-45, 2019.
doi:10.2528/PIER18112603

25. Song, K., Z. Su, S. Silva, C. Fowler, C. Ding, R. Ji, Y. Liu, X. Zhao, and J. Zhou, "Broadband and high-efficiency transmissive-type nondispersive polarization conversion meta-device," Opt. Mater. Express, Vol. 8, No. 8, 2018.
doi:10.1364/OME.8.002430

26. Wang, S.-Y., W. Liu, and W. Geyi, "A circular polarization converter based on in-linked loop antenna frequency selective surface," Appl. Phys. B, Vol. 124, No. 6, 2018.

27. Cui, Z. T., Z. Y. Xiao, M. M. Chen, F. Lv, and Q. D. Xu, "A transmissive linear polarization and circular polarization cross polarization converter based on all-dielectric metasurface," J. Electron. Mater., Vol. 50, No. 7, 4207-4214, 2021.
doi:10.1007/s11664-021-08944-2

28. Fei, P., G. A. E. Vandenbosch, W. H. Guo, X. Wen, D. Xiong, W. Hu, Q. Zheng, and X. Chen, "Versatile cross-polarization conversion chiral metasurface for linear and circular polarizations," Adv. Opt. Mater., Vol. 8, No. 13, 2020.
doi:10.1002/adom.202000194

29. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classi cation of periodic metamaterials," Phys. Rev. A, Vol. 82, No. 5, 2010.
doi:10.1103/PhysRevA.82.053811

30. Naseri, P., F. Khosravi, and P. Mousavi, "Antenna-filter-antenna-based transmit-array for circular polarization application," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1389-1392, 2017.
doi:10.1109/LAWP.2016.2638469

31. Wang, S. Y., W. Liu, and W. Geyi, "Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface," Sci. Rep., Vol. 8, No. 1, 3791, 2018.
doi:10.1038/s41598-018-22092-4

32. Xie, P., G. M. Wang, H. P. Li, J. G. Liang, and X. J. Gao, "Circularly polarized Fabry-Perot antenna employing a receiver-transmitter polarization conversion metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3213-3218, 2020.
doi:10.1109/TAP.2019.2950811

33. Akram, M. R., M. Q. Mehmood, X. D. Bai, R. H. Jin, M. Premaratne, and W. R. Zhu, "High efficiency ultrathin transmissive metasurfaces," Adv. Opt. Mater., Vol. 7, No. 11, 2019.
doi:10.1002/adom.201801628

34. Yu, Y. Z., F. J. Xiao, I. D. Rukhlenko, and W. R. Zhu, "High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface," AEU - Int J. Electron. C, Vol. 118, 2020.