Vol. 96
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-09-24
Full Wave Modeling of Electromagnetic Scattering by an Object Buried Between Two Rough Surfaces: Application to GPR
By
Progress In Electromagnetics Research B, Vol. 96, 133-152, 2022
Abstract
In this paper, we present an efficient numerical method to calculate the frequency and time responses of the field scattered by an object buried between two random rough surfaces for a 2-D problem. This method is called Generalized PILE (GPILE) method because it extends the PILE method which considers only two surfaces or an object buried under a surface. The GPILE method solves the Maxwell equations rigourously by using a simple matrix formulation. The obtained results have a straightforward physical interpretation and allow us to investigate the influence of the object buried between the two rough surfaces. We distinguish the primary echo of the upper surface, the multiple echoes coming from the lower surface and those arising from the object. The GPILE method is applied to simulate the Ground Penetrating Radar (GPR) signal at nadir. The resulting time response helps the user to detect the presence of the object buried between the two random rough surfaces.
Citation
Marc Songolo, Nicolas Pinel, and Christophe Bourlier, "Full Wave Modeling of Electromagnetic Scattering by an Object Buried Between Two Rough Surfaces: Application to GPR," Progress In Electromagnetics Research B, Vol. 96, 133-152, 2022.
doi:10.2528/PIERB22020807
References

1. Jin, J., The Finite Element Method in Electromagnetics, John Wiley and Sons, 1993.

2. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics, IEEE Press, 1998.
doi:10.1109/9780470544655

3. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

4. Cole, J. B. and S. Banerjee, Computing the Flow of Light: Nonstandard FDTD Methodologies for Photonics Design, SPIE Press Book, 2017.
doi:10.1117/3.2250614

5. Harrington, F., Field Computation by Moment Methods, Macmillan, New York, 1968.

6. Bourlier, C., N. Pinel, and G. Kubické, Method of Moments for 2-D Scattering Problems. Basic Concepts and Applications, ser. Focus Series in Waves, Wiley, Hoboken, NJ, USA, 2013.
doi:10.1002/9781118648674

7. Kapp, D. A. and G. S. Brown, "A new numerical method for rough-surface scattering calculations," IEEE Trans. on Antennas and Propagation, Vol. 44, 711-722, 1996.
doi:10.1109/8.496258

8. Holliday, D., L. L. DeRaad, Jr., and G. J. St-Cyr, "Forward-backward: A new method for computing low-grazing angle scattering," IEEE Trans. on Antennas and Propagation, Vol. 44, 1199-1206, 1995.
doi:10.1109/8.475091

9. Iodice, A., "Forward-backward method for scattering from dielectric rough surfaces," IEEE Trans. on Antennas and Propagation, Vol. 50, 901-911, 2002.
doi:10.1109/TAP.2002.800700

10. Chou, H. T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method," Radio Sci., Vol. 33, 1277-1287, 1998.
doi:10.1029/98RS01888

11. Tsang, L., C. H. Chang, and H. Sangani, "A banded matrix iterative approach to Monte Carlo simulations of scattering of waves by large scale random rough surface problems: TM case," Electron. Lett., Vol. 29, 1666-1667, 1993.

12. Tsang, L., C. H. Chang, H. Sangani, A. Ishimaru, and P. Phu, "A banded matrix iterative approach to Monte Carlo simulations of large scale random rough surface scattering: TE case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 9, 1185-1200, 2012.
doi:10.1163/156939393X00200

13. Tsang, L., C. H. Chan, K. Pak, and H. Sangani, "Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method," IEEE Trans. on Antennas and Propagation, Vol. 43, 851-859, 1995.
doi:10.1109/8.402205

14. Kuo, C.-H. and M. Moghaddam, "Scattering from multilayer rough surfaces based on the extended boundary condition method and truncated singular value decomposition," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 10, 2917-2929, 2006.
doi:10.1109/TAP.2006.882160

15. Moss, C. D., T. M. Grzegorczyk, H. C. Han, and J. A. Kong, "Forward backward method with spectral acceleration for scattering from layered rough surfaces," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 3, 1006-1016, 2006.
doi:10.1109/TAP.2006.869921

16. El-Shenawee, M., "Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects," IEEE Trans. Geoscience, and Remote Sensing, Vol. 42, No. 1, 67-76, 2004.
doi:10.1109/TGRS.2003.815675

17. Déchamps, N., N. De Beaucoudrey, C. Bourlier, and S. Toutain, "Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation-inside-layer expansion method," J. Opt. Soc. Am. A, Vol. 23, No. 2, 359-369, 2006.
doi:10.1364/JOSAA.23.000359

18. Déchamps, N. and C. Bourlier, "Electromagnetic scattering from a rough layer: Propagation-inside-layer expansion method combined to an updated BMIA/CAG approach," IEEE Trans. on Antennas and Propagation, Vol. 55, 2790-2802, 2007.
doi:10.1109/TAP.2007.905940

19. Déchamps, N. and C. Bourlier, "Electromagnetic scattering from a rough layer: Propagation-inside-layer expansion method combined to the forward-backward novel spectral acceleration," IEEE Trans. on Antennas and Propagation, Vol. 55, 3576-3586, 2007.
doi:10.1109/TAP.2007.910360

20. Bourlier, C., G. Kubické, and N. Déchamps, "A fast method to compute scattering by a buried object under a randomly rough surface: PILE combined to FB-SA," J. Opt. Soc. Am. A, Vol. 25, 891-902, 2008.
doi:10.1364/JOSAA.25.000891

21. Kubické, G., C. Bourlier, and J. Saillard, "Scattering by an object above a randomly rough surface from a fast numerical method: Extended PILE method combined to FB-SA," IEEE Trans. on Antennas and Propagation, Vol. 18, No. 03, 495-519, 2008.

22. Bourlier, C., C. Le Bastard, and V. Baltazart, "Generalization of PILE method to the EM scattering from stratified subsurface with rough interlayers: Application to the detection of debondings within pavement structure," IEEE Trans. Geoscience, and Remote Sensing, Vol. 53, No. 7, July 2015.

23. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 83, 78-92, 1988.
doi:10.1121/1.396188

24. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd Ed., Cambridge University Press, 1992.

25. Bourlier, C., C. Le Bastard, and N. Pinel, "Full wave PILE method for the electromagnetic scattering from random rough layer," Proc. GPR Int. Conf. Ground Penetrating Radar, 545-551, 2014.
doi:10.1109/ICGPR.2014.6970483