Vol. 103
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-03-21
A Novel Tunable LC Bandpass Filter with Constant Bandwidth Based on Magnetic Dominant Mixed Coupling
By
Progress In Electromagnetics Research Letters, Vol. 103, 73-79, 2022
Abstract
In this paper, a novel tunable LC bandpass filter (BPF) based on LC magnetic-dominant mixed coupling is proposed. The design equations for the coupling coefficient and resonating frequency are given. The magnetic dominant coupling region and electric dominant coupling region are studied. The magnetic-dominant mixed coupling is used to compensate the bandwidth of the tunable filter, so that the tunable filter with constant absolute bandwidth can be obtained. The filter is designed, simulated and measured, and the measurement matches the simulation very well. The measurement shows that the central frequency tuning range is from 72 MHz to 222 MHz with -3dB bandwidth of 16.5±3.5 MHz.
Citation
Longchuan Liu, Qian-Yin Xiang, Dinghong Jia, Xiaoguo Huang, and Quanyuan Feng, "A Novel Tunable LC Bandpass Filter with Constant Bandwidth Based on Magnetic Dominant Mixed Coupling," Progress In Electromagnetics Research Letters, Vol. 103, 73-79, 2022.
doi:10.2528/PIERL22020301
References

1. Hong, J.-S., "Reconfigurable planar filters," IEEE Microwave Magazine, Vol. 10, No. 6, 73-83, 2009.
doi:10.1109/MMM.2009.933590

2. Zhu, X., T. Yang, P.-L. Chi, and R. Xu, "Novel reconfigurable single-to-balanced, power-dividing, and single-ended filter with frequency and bandwidth control," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 2, 670-682, 2018.
doi:10.1109/TMTT.2018.2882501

3. Lin, F. and M. Rais-Zadeh, "Continuously tunable 0.55-1.9-GHz bandpass filter with a constant bandwidth using switchable varactor-tuned resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 3, 792-803, 2016.
doi:10.1109/TMTT.2016.2633270

4. Yang, J., Q. Xiang, X. Huang, D. Jia, and Q. Feng, "Tunable bandpass filters with constant absolute bandwidth cascaded trisection topology," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 1, 18-28, 2022.
doi:10.1080/09205071.2021.1955752

5. Song, K., et al. "Tunable balanced bandpass filter with constant absolute bandwidth and high common mode suppression," IET Microwaves, Antennas & Propagation, Vol. 14, No. 2, 147-152, 2020.
doi:10.1049/iet-map.2019.0389

6. Zhou, B., J.-P. Song, F. Wei, and X.-W. Shi, "A simple bandpass filter with independently tunable center frequency and bandwidth," Progress In Electromagnetics Research Letters, Vol. 69, 113-118, 2017.
doi:10.2528/PIERL17061502

7. Jiang, Y., X. Lin, C. Tang, and J. Yu, "An electronically tunable dual-band filtering power divider with tuning diodes sharing technique," Progress In Electromagnetics Research M, Vol. 65, 187-195, 2018.
doi:10.2528/PIERM18010937

8. Reyes-Ayona, J. R., T. K. Kataria, and A. Corona-Chavez, "Filter with selectable passband based on a miniaturized resonator," Progress In Electromagnetics Research Letters, Vol. 73, 31-36, 2018.
doi:10.2528/PIERL17102703

9. Guo, X., S.-J. Fang, H. Liu, and Z. Wang, "Design of compact electronically-tuned bandpass filter with sharp rejection skirt using the trans-directional coupled line," Progress In Electromagnetics Research Letters, Vol. 90, 127-133, 2020.
doi:10.2528/PIERL20020704

10. Xiang, Q., Q. Feng, X. Huang, and D. Jia, "Electrical tunable microstrip LC bandpass filters with constant bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 3, 1124-1130, 2013.
doi:10.1109/TMTT.2013.2241781

11. Sarkar, D. and T. Moyra, "A low cost electrically tunable bandpass filter with constant absolute bandwidth," AEU-International Journal of Electronics and Communications, Vol. 77, 156-162, 2017.

12. Tian, D., Q. Feng, and Q. Xiang, "A constant absolute bandwidth tunable band-pass filter based on magnetic dominated mixed coupling and source{load electric coupling," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 15, 1953-1963, 2016.
doi:10.1080/09205071.2016.1226965

13. Zhang, D., Q.-Y. Xiang, M.-Y. Fu, D.-Y. Tian, and Q.-Y. Feng, "A constant absolute bandwidth tunable bandpass filter based on mixed coupled varactor loaded open ring resonators," 2016 Progress In Electromagnetic Research Symposium (PIERS), 3464-3467, Shanghai, China, Aug. 8-11, 2016.

14. Zhang, H.-L., X. Y. Zhang, and B.-J. Hu, "Tunable bandpass filters with constant absolute bandwidth," Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, 1200-1203, IEEE, 2010.
doi:10.1109/ISAPE.2010.5696695

15. Liu, L., Q.-Y. Xiang, X. Hu, Z. Zheng, Z. Di, and Q. Feng, "A 70 MHz~270 MHz electrical tunable LC bandpass filter based on mixed coupling and cross-coupling," Progress In Electromagnetics Research Letters, Vol. 66, 45-51, 2017.
doi:10.2528/PIERL16120104

16. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2004.

17. Tian, D., Q. Feng, and Q. Xiang, "Synthesis applied 4th-order constant absolute bandwidth frequency-agile bandpass filter with cross-coupling," IEEE Access, Vol. 6, 72287-72294, 2018.
doi:10.1109/ACCESS.2018.2882578

18. Cai, J., J. X. Chen, X. F. Zhang, Y. J. Yang, and Z. H. Bao, "Electrically varactor-tuned bandpass filter with constant bandwidth and self-adaptive transmission zeros," IET Microwaves, Antennas & Propagation, Vol. 11, No. 11, 1542-1548, 2017.
doi:10.1049/iet-map.2016.0919

19. Ohira, M., S. Hashimoto, Z. Ma, and X. Wang, "Coupling-matrix-based systematic design of single-DC-bias-controlled microstrip higher order tunable bandpass filters with constant absolute bandwidth and transmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 1, 118-128, 2018.
doi:10.1109/TMTT.2018.2873366