Vol. 104
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-05-26
Design of a Double-Mode Plasmonic Wavelength Filter Using a Defective Circular Nano-Disk Resonator Coupled to Two MIM Waveguides
By
Progress In Electromagnetics Research Letters, Vol. 104, 67-75, 2022
Abstract
Various resonance modes, high transmission, and quality factor with simple design are highly desirable parameters for realizing nano-integrated plasmonic devices. In the context, a plasmonic structure consisting of two straight waveguides MIM coupled one central defective circular nano-disk resonator (CNDR) is proposed in this work. The insulator and metal of the proposed plasmonic filter are air and silver, respectively. The plasmonic filter is designed and investigated numerically by using the finite difference time domain method (FDTD). Our simulation results indicate that the proposed plasmonic filter has two transmission peaks with a maximum transmission equal to 80 and 70 percent. The advantages of the proposed filter are the various resonance modes with high transmission peaks and high quality factor which reaches 35.27. In view of these features, our proposed structure of plasmonic filter has the potential to be employed in various devices such as plasmonic demultiplexers and sensors for optical communication purposes.
Citation
Imane Zegaar, Abdesselam Hocini, Ahlam Harhouz, Djamel Khedrouche, and Hocine Bensalah, "Design of a Double-Mode Plasmonic Wavelength Filter Using a Defective Circular Nano-Disk Resonator Coupled to Two MIM Waveguides," Progress In Electromagnetics Research Letters, Vol. 104, 67-75, 2022.
doi:10.2528/PIERL22012905
References

1. Maier, S. A., et al. Plasmonics: Fundamentals and Applications, Vol. 1, Springer, 2007.
doi:10.1007/0-387-37825-1

2. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 035504, 2017.
doi:10.1063/1.4977782

3. Wang, L., L. Han, W. Guo, L. Zhang, C. Yao, Z. Chen, Y. Chen, C. Guo, K. Zhang, C.-N. Kuo, et al. "Hybrid dirac semimetal-based photodetector with efficient low-energy photon harvesting," Light: Science & Applications, Vol. 11, No. 1, 1-10, 2022.
doi:10.1038/s41377-021-00680-w

4. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, No. 19, 8938-8946, 2018.
doi:10.1039/C8NR01395K

5. Oliverio, M., S. Perotto, G. C. Messina, L. Lovato, and F. De Angelis, "Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs," ACS Applied Materials & Interfaces, Vol. 9, No. 35, 29394-29411, 2017.
doi:10.1021/acsami.7b01583

6. Balbinot, S., A. M. Srivastav, J. Vidic, I. Abdulhalim, and M. Manzano, "Plasmonic biosensors for food control," Trends in Food Science & Technology, 2021.

7. Janković, N. and N. Cselyuszka, "High-resolution plasmonic filter and refractive index sensor based on perturbed square cavity with slits and orthogonal feeding scheme," Plasmonics, Vol. 14, No. 3, 555-560, 2019.
doi:10.1007/s11468-018-0834-z

8. Zhang, Y., S. Li, Z. Chen, P. Jiang, R. Jiao, Y. Zhang, L. Wang, and L. Yu, "Ultra-high sensitivity plasmonic nanosensor based on multiple fano resonance in the MDM side-coupled cavities," Plasmonics, Vol. 12, No. 4, 1099-1105, 2017.
doi:10.1007/s11468-016-0363-6

9. Shi, L., J. He, C. Tan, Y. Liu, J. Hu, X. Wu, M. Chen, X. Zhang, and S. Zhan, "Plasmonic filter with highly selective wavelength in a fixed dimension based on the loaded rectangular ring cavity," Optics Communications, Vol. 439, 125-128, 2019.
doi:10.1016/j.optcom.2019.01.058

10. Butt, M. A., N. L. Kazanskiy, and S. N. Khonina, "Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes," Current Applied Physics, Vol. 20, No. 11, 1274-1280, 2020.
doi:10.1016/j.cap.2020.08.020

11. Veronis, G. and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Applied Physics Letters, Vol. 87, No. 13, 131102, 2005.
doi:10.1063/1.2056594

12. Lu, H., G. X. Wang, and X. M. Liu, "Manipulation of light in MIM plasmonic waveguide systems," Chinese Science Bulletin, Vol. 58, No. 30, 3607-3616, 2013.
doi:10.1007/s11434-013-5989-6

13. Diniz, L. O., F. D. Nunes, E. Marega, J. Weiner, and B.-H. V. Borges, "Metal-insulator-metal surface plasmon polariton waveguide filters with cascaded transverse cavities," Journal of Lightwave Technology, Vol. 29, No. 5, 714-720, 2010.
doi:10.1109/JLT.2010.2101582

14. Rakhshani, M. R. and M. A. Mansouri-Birjandi, "High sensitivity plasmonic refractive index sensing and its application for human blood group identification," Sensors and Actuators B: Chemical, Vol. 249, 168-176, 2017.
doi:10.1016/j.snb.2017.04.064

15. Huang, S., C. Song, G. Zhang, and H. Yan, "Graphene plasmonics: Physics and potential applications," Nanophotonics, Vol. 6, No. 6, 1191-1204, 2017.
doi:10.1515/nanoph-2016-0126

16. Li, G., X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu, "A novel plasmonic resonance sensor based on an infrared perfect absorber," Journal of Physics D: Applied Physics, Vol. 45, No. 20, 205102, 2012.
doi:10.1088/0022-3727/45/20/205102

17. Ye, J. and P. van Dorpe, "Improvement of figure of merit for gold nanobar array plasmonic sensors," Plasmonics, Vol. 6, No. 4, 665-671, 2011.
doi:10.1007/s11468-011-9249-9

18. Harhouz, A. and A. Hocini, "Highly sensitive plasmonic temperature sensor based on fano resonances in MIM waveguide coupled with defective oval resonator," Optical and Quantum Electronics, Vol. 53, No. 8, 1-11, 2021.
doi:10.1007/s11082-021-03088-3

19. Zhan, G., R. Liang, H. Liang, J. Luo, and R. Zhao, "Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities," Optics Express, Vol. 22, No. 8, 9912-9919, 2014.
doi:10.1364/OE.22.009912

20. Shang, C., Z. Chen, L.-L. Wang, Y.-F. Zhao, G.-Y. Duan, and L. Yu, "Characteristics of the coupled-resonator structure based on a stub resonator and a nanodisk resonator," Chinese Physics Letters, Vol. 31, No. 11, 114202, 2014.
doi:10.1088/0256-307X/31/11/114202

21. Rafiee, E., R. Negahdari, and F. Emami, "Plasmonic multi channel filter based on split ring resonators: Application to photothermal therapy," Photonics and Nanostructures-Fundamentals and Applications, Vol. 33, 21-28, 2019.

22. Chou, Y.-F., C.-T. Chou Chao, H. J. Huang, M. Raziq, and H.-P. Chiang, "Ultrawide bandgap and high sensitivity of a plasmonic metal-insulator-metal waveguide filter with cavity and baffles," Nanomaterials, Vol. 10, No. 10, 2030, 2020.
doi:10.3390/nano10102030

23. Hocini, A., T. Boumaza, M. Bouchemat, F. Royer, D. Jamon, and J. J. Rousseau, "Birefringence in magneto-optical rib waveguides made by Sio2/Tio2 doped with γ-Fe2O3," Microelectronics Journal, Vol. 39, No. 1, 99-102, 2008.
doi:10.1016/j.mejo.2007.09.012

24. Achi, S. E., A. Hocini, H. Ben Salah, and A. Harhouz, "Refractive index sensor MIM based waveguide coupled with a slotted side resonator," Progress In Electromagnetics Research M, Vol. 96, 147-156, 2020.
doi:10.2528/PIERM20061803

25. Lai, W., K. Wen, J. Lin, Z. Guo, Q. Hu, and Y. Fang, "Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator," Applied Optics, Vol. 57, No. 22, 6369-6374, 2018.
doi:10.1364/AO.57.006369

26. Ben Salah, H., A. Hocini, M. N. E. Temmar, and D. Khedrouche, "Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor," Chinese Journal of Physics, Vol. 61, 86-97, 2019.
doi:10.1016/j.cjph.2019.07.006

27. Hocini, A., D. Khedrouche, N. Melouki, et al. "A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal-insulator-metal structure," Optical and Quantum Electronics, Vol. 52, No. 7, 1-10, 2020.
doi:10.1007/s11082-020-02446-x