1. Zhao, Y. and A. Alu, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. B: Condens. Matter, Vol. 84, No. 20, 205-428, 2011.
2. Sun, W. J., Q. He, J. M. Hao, and L. Zhou, "A transparent metamaterial to manipulate electromagnetic wave polarization," Optics Letters, Vol. 36, No. 6, 927-929, 2011.
doi:10.1364/OL.36.000927
3. Peng, L., X. F. Li, X. Jiang, and S. M. Li, "A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating," Journal of Lightwave Technology, Vol. 36, No. 19, 4250-4258, 2018.
doi:10.1109/JLT.2018.2836904
4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847
5. Zhu, W. R., X. P. Zhao, and J. Q. Guo, "Multibands of negative refractive indexes in the left-handed metamaterials with multiple dendritic structures," Applied Physics Letters, Vol. 92, No. 24, 241116, 2008.
doi:10.1063/1.2949552
6. Gao, X., X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high- efficiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392
7. Chakravarty, S. and D. Mitra, "A novel ultra-wideband and multifunctional reflective polarization converter," 2020 IEEE 17th India Council International Conference (INDICON), 1-4, 2020.
8. Kamal, B., J. Chen, Y. Yin, J. Ren, S. Ullah, and U. Ali, "Design and experimental analysis of dual-band polarization converting metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1409-1413, 2021.
doi:10.1109/LAWP.2021.3083334
9. Yu, H. and J. Su, "Dual-band and high-efficiency re ective polarization converter based on strip grating," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 967-968, 2020.
doi:10.1109/IEEECONF35879.2020.9330064
10. Zhou, Q., G. Du, and D.Wang, "Ultra-broadband linear polarization converter based on single-layer reflective metasurface," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, 2020.
11. Karamirad, M., C. Ghobadi, and J. Nourinia, "Metasurfaces for wideband and efficient polarization rotation," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1799-1804, 2021.
doi:10.1109/TAP.2020.3012828
12. Baghel, A. K., S. S. Kulkarni, and S. K. Nayak, "Linear-to-cross-polarization transmission converter using ultrathin and smaller periodicity metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1433-1437, 2019.
doi:10.1109/LAWP.2019.2919423
13. Wang, S. Y., J. D. Bi, W. Liu, W. Geyi, and S. Gao, "Polarization-insensitive cross-polarization converter," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4670-4680, 2021.
doi:10.1109/TAP.2021.3060087
14. Zhu, X., et al. "Design of a bandwidth-enhanced polarization rotating frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 940-944, 2014.
doi:10.1109/TAP.2013.2290798
15. Du, X., H. Lin, X. Shi, Y. Mao, and Y. Wu, "Triple-band metamaterial polarization converter based on substrate integrated waveguide technology," 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), 1-3, 2020.
16. Ye, Y. Q. and S. L. He, "90◦ polarization rotator using a bilayered chiral metamaterial with giant optical activity," Applied Physics Letters, Vol. 96, 203501, 2010.
doi:10.1063/1.3429683
17. Nandi, R., Nilotpal, and S. Bhattacharyya, "A transmittive type broadband cross polarization converter for mid wavelength infrared region," 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 1-4, 2019.
18. Song, K., Y. H. Liu, Q. H. Fu, X. P. Zhao, C. R. Luo, and W. R. Zhu, "90◦ polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial," Opt. Express, Vol. 21, No. 6, 7439-7446, 2013.
doi:10.1364/OE.21.007439
19. Jing, X., X. Gui, P. Zhou, and Z. Hong, "Physical explanation of Fabry-Perot cavity for broadband bilayer metamaterials polarization converter," Journal of Lightwave Technology, Vol. 36, No. 12, 2322-2327, 2018.
doi:10.1109/JLT.2018.2808339