1. Morimoto, S., S. Ooi, Y. Inoue, and M. Sanada, "Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications," IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, 5749-5756, 2014, doi: 10.1109/TIE.2013.2289856.
2. Ramesh, P. and N. C. Lenin, "High power density electrical machines for electric vehicles - Comprehensive review based on material technology," IEEE Transactions on Magnetics, Vol. 55, No. 11, 1-21, 2019, doi: 10.1109/TMAG.2019.2929145.
3. Bonthu, S. S. R., A. Arafat, and S. Choi, "Comparisons of rare-earth and rare-earth free external rotor permanent magnet assisted synchronous reluctance motors," IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, 9729-9738, 2017, doi: 10.1109/TIE.2017.2711580.
4. Yu, D., X. Huang, X. Zhang, J. Zhang, Q. Lu, and Y. Fang, "Optimal design of outer rotor interior permanent magnet synchronous machine with hybrid permanent magnet," IEEE Transactions Applied Superconductivity, Vol. 29, No. 2, 1-5, 2019, doi: 10.1109/TASC.2019.2895260.
5. Wu, W., X. Zhu, L. Quan, Y. Du, Z. Xiang, and X. Zhu, "Design and analysis of a hybrid permanent magnet assisted synchronous reluctance motor considering magnetic saliency and PM usage," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-6, 2018, doi: 10.1109/TASC.2017.2775584.
6. Chen, Y., T. Cai, X. Zhu, D. Fan, and Q. Wang, "Analysis and design of a new type of less-rare-earth hybrid-magnet motor with different rotor topologies," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-6, 2020, doi: 10.1109/TASC.2020.2965879.
7. Chen, J. T., Z. Q. Zhu, S. Iwasaki, and R. P. Deodhar, "Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines," IEEE Transactions on Industry Applications, Vol. 47, No. 4, 1681-1691, 2011, doi: 10.1109/TIA.2011.2155011.
8. Petrov, I., M. Niemela, P. Ponomarev, and J. Pyrhonen, "Rotor surface ferrite permanent magnets in electrical machines: Advantages and limitations," IEEE Transactions on Industrial Electronics, Vol. 64, No. 7, 5314-5322, 2017, doi: 10.1109/TIE.2017.2677320.
9. Vartanian, R., H. A. Toliyat, B. Akin, and R. Poley, "Power factor improvement of synchronous reluctance motors, SynRM) using permanent magnets for drive size reduction," Proceedings of Annual IEEE Applied Power Electronics Conference and Exposition, APEC), 628-633, Orlando, USA, 2012, doi: 10.1109/APEC.2012.6165884.
10. Zhao, W., D. Chen, T. A. Lipo, and B. I. Kwon, "Performance improvement of ferrite-assisted synchronous reluctance machines using asymmetrical rotor configurations," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015, doi: 10.1109/TMAG.2015.2436414.
11. Jung, Y. H., M. R. Park, K. O. Kim, J. W. Chin, J. P. Hong, and M. S. Lim, "Design of high-speed multilayer IPMSM using ferrite PM for EV traction considering mechanical and electrical characteristics," IEEE Transactions on Industry Applications, Vol. 57, No. 1, 327-329, 2021, doi: 10.1109/TIA.2020.3033783.
12. Huang, H., Y. S. Hu, Y. Xiao, and H. Lyu, "Research of parameters and antidemagnetization of rare-earth-less permanent magnet-assisted synchronous reluctance motor," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015, doi: 10.1109/TMAG.2015.2445934.
13. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016, doi: 10.1109/TMAG.2016.2519465.
14. Kim, K. H., H. I. Park, S. M. Jang, D. J. You, and J. Y. Choi, "Comparative study of electromagnetic performance of high-speed synchronous motors with rare-earth and ferrite permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016, doi: 10.1109/TMAG.2016.2532901.
15. Awah, C. C., "Effect of permanent magnet material on the electromagnetic performance of switched-flux permanent magnet machine," Electrical Engineering, Vol. 103, No. 3, 1647-1660, 2021, doi: https://doi.org/10.1007/s00202-020-01155-8.
16. El-Refaie, A., "Role of advanced materials in electrical machines," CES Transactions on Electrical Machines and Systems, Vol. 3, No. 2, 124-132, 2019, doi: 10.30941/CESTEMS.2019.00018.
17. Tahanian, H., M. Aliahmadi, and J. Faiz, "Ferrite permanent magnets in electrical machines: opportunities and challenges of a non-rare-earth alternative," IEEE Transactions on Magnetics, Vol. 56, No. 3, 1-20, 2020, doi: 10.1109/TMAG.2019.2957468.
18. Xu, H., J. Li, J. Chen, Y. Lu, and M. Ge, "Analysis of a hybrid permanent magnet variable-flux machine for electric vehicle tractions considering magnetizing and demagnetizing current," IEEE Transactions on Industry Applications, Vol. 57, No. 6, 5983-5992, 2021, doi: 10.1109/TIA.2021.3115077.
19. Liu, X., H. Chen, J. Zhao, and A. Belahcen, "Research on the performances and parameters of interior PMSM used for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3533-3545, 2016, doi: 10.1109/TIE.2016.2524415.
20. Zhu, Z. Q., D. Ishak, D. Howe, and J. Chen, "Unbalanced magnetic forces in permanent-magnet brushless machines with diametrically asymmetric phase windings," IEEE Transactions on Industry Applications, Vol. 43, No. 6, 1544-1553, 2007, doi: 10.1109/IAS.2005.1518484.
21. Barcaro, M., N. Bianchi, and F. Magnussen, "Six-phase supply feasibility using a PM fractional-slot dual winding machine," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2042-2050, 2011, doi: 10.1109/TIA.2011.2161859.
22. Thomas, A. S., Z. Q. Zhu, R. L. Owen, G. W. Jewell, and D. Howe, "Multiphase flux-switching permanent-magnet brushless machine for aerospace application," IEEE Transactions on Industry Applications, Vol. 45, No. 6, 1971-1981, 2009, doi: 10.1109/TIA.2009.2031901.
23. Kang, M., L. Xu, J. Ji, and X. Zhu, "Design and analysis of a high torque density hybrid permanent magnet excited vernier machine," Energies, Vol. 15, No. 5, 1723, 2022, https://doi.org/10.3390/en15051723.
24. Hua, W. and C. Ming, "Inductance characteristics of 3-phase flux-switching permanent magnet machine with doubly-salient structure," Proceedings of IEEE International Conference on Power Electronics and Motion Control, 1-5, Shanghai, China, 2006, doi: 10.1109/IPEMC.2006.4778302.
25. Liu, X., G. Guo, L. Du, and W. Zhu, "Multi-objective optimal design and analysis of variable leakage flux IPM motors for improve flux-weakening ability," Progress In Electromagnetics Research C, Vol. 113, 147-160, 2021, doi: 10.2528/PIERC21042502.
26. Liu, X., G. Guo, S. Zhu, and J. Liang, "Design and analysis of variable leakage flux flux-intensifying motor for improve flux-weakening ability," Progress In Electromagnetics Research M, Vol. 103, 221-233, 2021, doi: 10.2528/PIERM21070204.