Vol. 109
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-03-28
Influence of Magnetic Remanence and Coercive Force on the Electromagnetic Output of Permanent Magnet Machine
By
Progress In Electromagnetics Research M, Vol. 109, 75-88, 2022
Abstract
The impact of permanent magnet (PM) properties such as magnetremanence and coercive force or coercivity on the electromagnetic output of flux-switching permanent magnet machine having C-core stator topology is presented and compared in this work. A two-dimensional finite-element analysis (2D-FEA) approach is implemented using ANSYS-MAXWELL software package. Three-dimensional (3D) FEA calculations are also conducted, in order to realize more accurate results, and its results are compared with the 2D-FEA predicted results. The investigated machine elements are: airgap flux-density, torque ripple, total harmonic distortion (THD) of the voltage, cogging torque, unbalanced magnetic pull (UMP) or force, winding inductances, direct- and quadrature-axis flux, electromotive force and output torque. The analyses show that undesirable qualities such as large amount of cogging torque and UMP are predominant in the machine having rare-earth magnets i.e. neodymium and samarium-cobalt, although they have larger flux linkage and superior average torque compared to its non-rare-earth magnet equivalents i.e. the ferrite- and alnico-made machines. Moreover, the alnico- and ferrite-made machines exhibit larger winding inductance values, and consequently lower saturation withstand capability, though with better field-weakening capability. Further, the predicted efficiencies of the compared machine types having alnico, ferrite, neodymium and samarium materials, at rated current and speed conditions are: 79.8%, 75.76%, 87.22% and 86.58%, respectively. More so, the generated electromagnetic output power of the compared machine types at the operating base speed is: 206.57 Watts, 186.57 Watts, 449.67 Watts and 396.40 Watts, respectively. The investigated machine is suitable for high torque in-wheel direct-drive applications.
Citation
Stephen Ejiofor Oti, and Chukwuemeka Chijioke Awah, "Influence of Magnetic Remanence and Coercive Force on the Electromagnetic Output of Permanent Magnet Machine," Progress In Electromagnetics Research M, Vol. 109, 75-88, 2022.
doi:10.2528/PIERM22012711
References

1. Morimoto, S., S. Ooi, Y. Inoue, and M. Sanada, "Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications," IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, 5749-5756, 2014, doi: 10.1109/TIE.2013.2289856.

2. Ramesh, P. and N. C. Lenin, "High power density electrical machines for electric vehicles - Comprehensive review based on material technology," IEEE Transactions on Magnetics, Vol. 55, No. 11, 1-21, 2019, doi: 10.1109/TMAG.2019.2929145.

3. Bonthu, S. S. R., A. Arafat, and S. Choi, "Comparisons of rare-earth and rare-earth free external rotor permanent magnet assisted synchronous reluctance motors," IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, 9729-9738, 2017, doi: 10.1109/TIE.2017.2711580.

4. Yu, D., X. Huang, X. Zhang, J. Zhang, Q. Lu, and Y. Fang, "Optimal design of outer rotor interior permanent magnet synchronous machine with hybrid permanent magnet," IEEE Transactions Applied Superconductivity, Vol. 29, No. 2, 1-5, 2019, doi: 10.1109/TASC.2019.2895260.

5. Wu, W., X. Zhu, L. Quan, Y. Du, Z. Xiang, and X. Zhu, "Design and analysis of a hybrid permanent magnet assisted synchronous reluctance motor considering magnetic saliency and PM usage," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-6, 2018, doi: 10.1109/TASC.2017.2775584.

6. Chen, Y., T. Cai, X. Zhu, D. Fan, and Q. Wang, "Analysis and design of a new type of less-rare-earth hybrid-magnet motor with different rotor topologies," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-6, 2020, doi: 10.1109/TASC.2020.2965879.

7. Chen, J. T., Z. Q. Zhu, S. Iwasaki, and R. P. Deodhar, "Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines," IEEE Transactions on Industry Applications, Vol. 47, No. 4, 1681-1691, 2011, doi: 10.1109/TIA.2011.2155011.

8. Petrov, I., M. Niemela, P. Ponomarev, and J. Pyrhonen, "Rotor surface ferrite permanent magnets in electrical machines: Advantages and limitations," IEEE Transactions on Industrial Electronics, Vol. 64, No. 7, 5314-5322, 2017, doi: 10.1109/TIE.2017.2677320.

9. Vartanian, R., H. A. Toliyat, B. Akin, and R. Poley, "Power factor improvement of synchronous reluctance motors, SynRM) using permanent magnets for drive size reduction," Proceedings of Annual IEEE Applied Power Electronics Conference and Exposition, APEC), 628-633, Orlando, USA, 2012, doi: 10.1109/APEC.2012.6165884.

10. Zhao, W., D. Chen, T. A. Lipo, and B. I. Kwon, "Performance improvement of ferrite-assisted synchronous reluctance machines using asymmetrical rotor configurations," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015, doi: 10.1109/TMAG.2015.2436414.

11. Jung, Y. H., M. R. Park, K. O. Kim, J. W. Chin, J. P. Hong, and M. S. Lim, "Design of high-speed multilayer IPMSM using ferrite PM for EV traction considering mechanical and electrical characteristics," IEEE Transactions on Industry Applications, Vol. 57, No. 1, 327-329, 2021, doi: 10.1109/TIA.2020.3033783.

12. Huang, H., Y. S. Hu, Y. Xiao, and H. Lyu, "Research of parameters and antidemagnetization of rare-earth-less permanent magnet-assisted synchronous reluctance motor," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015, doi: 10.1109/TMAG.2015.2445934.

13. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016, doi: 10.1109/TMAG.2016.2519465.

14. Kim, K. H., H. I. Park, S. M. Jang, D. J. You, and J. Y. Choi, "Comparative study of electromagnetic performance of high-speed synchronous motors with rare-earth and ferrite permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016, doi: 10.1109/TMAG.2016.2532901.

15. Awah, C. C., "Effect of permanent magnet material on the electromagnetic performance of switched-flux permanent magnet machine," Electrical Engineering, Vol. 103, No. 3, 1647-1660, 2021, doi: https://doi.org/10.1007/s00202-020-01155-8.

16. El-Refaie, A., "Role of advanced materials in electrical machines," CES Transactions on Electrical Machines and Systems, Vol. 3, No. 2, 124-132, 2019, doi: 10.30941/CESTEMS.2019.00018.

17. Tahanian, H., M. Aliahmadi, and J. Faiz, "Ferrite permanent magnets in electrical machines: opportunities and challenges of a non-rare-earth alternative," IEEE Transactions on Magnetics, Vol. 56, No. 3, 1-20, 2020, doi: 10.1109/TMAG.2019.2957468.

18. Xu, H., J. Li, J. Chen, Y. Lu, and M. Ge, "Analysis of a hybrid permanent magnet variable-flux machine for electric vehicle tractions considering magnetizing and demagnetizing current," IEEE Transactions on Industry Applications, Vol. 57, No. 6, 5983-5992, 2021, doi: 10.1109/TIA.2021.3115077.

19. Liu, X., H. Chen, J. Zhao, and A. Belahcen, "Research on the performances and parameters of interior PMSM used for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3533-3545, 2016, doi: 10.1109/TIE.2016.2524415.

20. Zhu, Z. Q., D. Ishak, D. Howe, and J. Chen, "Unbalanced magnetic forces in permanent-magnet brushless machines with diametrically asymmetric phase windings," IEEE Transactions on Industry Applications, Vol. 43, No. 6, 1544-1553, 2007, doi: 10.1109/IAS.2005.1518484.

21. Barcaro, M., N. Bianchi, and F. Magnussen, "Six-phase supply feasibility using a PM fractional-slot dual winding machine," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2042-2050, 2011, doi: 10.1109/TIA.2011.2161859.

22. Thomas, A. S., Z. Q. Zhu, R. L. Owen, G. W. Jewell, and D. Howe, "Multiphase flux-switching permanent-magnet brushless machine for aerospace application," IEEE Transactions on Industry Applications, Vol. 45, No. 6, 1971-1981, 2009, doi: 10.1109/TIA.2009.2031901.

23. Kang, M., L. Xu, J. Ji, and X. Zhu, "Design and analysis of a high torque density hybrid permanent magnet excited vernier machine," Energies, Vol. 15, No. 5, 1723, 2022, https://doi.org/10.3390/en15051723.

24. Hua, W. and C. Ming, "Inductance characteristics of 3-phase flux-switching permanent magnet machine with doubly-salient structure," Proceedings of IEEE International Conference on Power Electronics and Motion Control, 1-5, Shanghai, China, 2006, doi: 10.1109/IPEMC.2006.4778302.

25. Liu, X., G. Guo, L. Du, and W. Zhu, "Multi-objective optimal design and analysis of variable leakage flux IPM motors for improve flux-weakening ability," Progress In Electromagnetics Research C, Vol. 113, 147-160, 2021, doi: 10.2528/PIERC21042502.

26. Liu, X., G. Guo, S. Zhu, and J. Liang, "Design and analysis of variable leakage flux flux-intensifying motor for improve flux-weakening ability," Progress In Electromagnetics Research M, Vol. 103, 221-233, 2021, doi: 10.2528/PIERM21070204.