Vol. 103
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-03-21
A Dual-Polarized Wide-Angle Scanning Antenna with High Isolation for Van Atta Applications
By
Progress In Electromagnetics Research Letters, Vol. 103, 81-88, 2022
Abstract
A dual-polarized wide-angle scanning array antenna is proposed in this paper. The proposed antenna array consists of sixteen elements with the working band from 9.5 to 10.5 GHz. A microstrip patch fed from two orthogonal directions is applied to achieve dual-polarization. In order to obtain good impedance matching and wide bandwidth of the antenna, capacitive coupling feeding is adopted. The measured results show that the proposed array can cover a wide scanning range of ±58°. The polarization isolations of antenna are higher than 17 dB. The isolations between receiving sub-array and transmitting sub-array are higher than 22.3 dB. The proposed array antenna is suitable for Van Atta applications.
Citation
Chunliang Dai, and Lei Gan, "A Dual-Polarized Wide-Angle Scanning Antenna with High Isolation for Van Atta Applications," Progress In Electromagnetics Research Letters, Vol. 103, 81-88, 2022.
doi:10.2528/PIERL22011803
References

1. Ettorre, M., W. A. Alomar, and A. Grbic, "2-D Van Atta array of wideband, wideangle slots for radiative wireless power transfer systems," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4577-4585, 2018.
doi:10.1109/TAP.2018.2851197

2. Song, K., D. Feng, J. Wang, Q. Xie, and L. Liu, "Phase modulation of retro-reflected radar echo signal using a microstrip Van-Atta Array," IEEE Access, Vol. 7, 96011-96018, 2019.
doi:10.1109/ACCESS.2019.2928321

3. Re, P. D. H., S. K. Podilchak, S. Rotenberg, G. Goussetis, and J. Lee, "Retrodirective antenna array for circularly polarized wireless power transmission," 2017 11th European Conference on Antennas and Propagation (EUCAP), 891-895, 2017.
doi:10.23919/EuCAP.2017.7928801

4. Ettorre, M., W. A. Alomar, and A. Grbic, "Radiative wireless power-transfer system using wideband, wide-angle slot arrays," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2975-2982, 2017.
doi:10.1109/TAP.2017.2688930

5. Atta, L. C. V., Electromagnetic Reflector, US, 1959.

6. Miao, Z., Z. Hao, and Q. Yuan, "A passive circularly polarized Van Atta reflector for vehicle radar applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2254-2257, 2017.
doi:10.1109/LAWP.2017.2711492

7. Yau, K. S. B., "Development of a passive retrodirective Van Atta array reflector at X-band," 2013 International Conference on Radar, 398-402, 2013.
doi:10.1109/RADAR.2013.6652021

8. El-Sawaf, H. I. A., M. El-Tager, and A. M. Ghuneim, "A proposed 2-D active Van Atta retrodirective array using dual-polarized microstrip antenna," 2012 Asia Pacific Microwave Conference Proceedings, 1103-1105, 2012.
doi:10.1109/APMC.2012.6421838

9. Gevorkyan, A. V., "Wideband microstrip Van Atta array," 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 852-854, 2019.
doi:10.1109/EIConRus.2019.8657079

10. Yan, L. and Z. Shen, "Compact wideband wide-angle Van Atta retrore structural mode," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 736-740, 2020.
doi:10.1109/LAWP.2020.2977764

11. Yen, S., L. B. Boskovic, and D. S. Filipovic, "Co-circularly polarized Van Atta array enabled by quasi-monostatic STAR antennas," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7156-7165, 2021.
doi:10.1109/TAP.2021.3069586