1. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402
2. Anjit, T. A., R. Benny, P. Cherian, and P. Mythili, "Non-iterative microwave imaging solutions for inverse problems using deep learning," Progress In Electromagnetics Research M, Vol. 102, 53-63, 2021.
doi:10.2528/PIERM21021304
3. Wang, F., et al. "Multi-resolution convolutional neural networks for inverse problems," Scientific Reports, Vol. 10, 1-11, 2020.
doi:10.1038/s41598-019-56847-4
4. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 4050, 1-14, 2019.
5. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 57, 1849-1860, 2019.
doi:10.1109/TGRS.2018.2869221
6. Yao, H. M., W. E. I. Sha, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 2254-2258, 2019.
doi:10.1109/LAWP.2019.2925578
7. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Trans. Image Processing, Vol. 26, 4509-4522, 2017.
doi:10.1109/TIP.2017.2713099
8. Zhang, L., K. Xu, R. Song, X. Z. Ye, G. Wang, and X. Chen, "Learning-based quantitative microwave imaging with a hybrid input scheme," IEEE Sensors Journal, Vol. 20, 15007-15013, 2020, doi: 10.1109/JSEN.2020.3012177.
doi:10.1109/JSEN.2020.3012177
9. Kak, A. C. and M. Slaney, Principles of Computerized Tomographic Imaging, Society of Industrial and Applied Mathematics, July 2001.
10. Deng, L., "The MNIST database of handwritten digit images for machine learning research," IEEE Signal Processing Magazine, Vol. 29, 141-142, 2012, doi:10.1109/MSP.2012.2211477.
doi:10.1109/MSP.2012.2211477
11. Geffrin, J.-M., P. Sabouroux, and C. Eyraoud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Probl., Vol. 21, 117-130, 2005.
doi:10.1088/0266-5611/21/6/S09
12. Li, L., et al. "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Trans. Antennas and Propag., Vol. 67, 1819-1825, 2019.
doi:10.1109/TAP.2018.2885437