Vol. 109
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-10
Deep Learning Based Non-Iterative Solution to the Inverse Problem in Microwave Imaging
By
Progress In Electromagnetics Research M, Vol. 109, 231-240, 2022
Abstract
A deep learning-based approach in conjugation with Fourier Diffraction Theorem (FDT) is proposed in this paper to solve the inverse scattering problem arising in microwave imaging. The proposed methodology is adept in generating a permittivity mapping of the object in less than a second and hence has the potential for real-time imaging. The reconstruction of the dielectric permittivity from the measured scattered field values is done in a single step as against that by a long iterative procedure employed by conventional numerical methods. The proposed technique proceeds in two stages; with the initial estimate of the contrast function being generated by the FDT in the first stage. This initial profile is fed to a trained U-net to reconstruct the final dielectric permittivities of the scatterer in the second stage. The capability of the proposed method is compared with other works in the recent literature using the Root Mean Square Error (RMSE). The proposed method generates an RMSE of 0.0672 in comparison to similar deep learning methods like Back Propagation-Direct Sampling Method (BP-DSM) and Subspace-Based Variational Born Iterative Method (SVBIM), which produce error values 0.1070 and 0.0813 in the case of simulation (using Austria Profile). The RMSE level while reconstructing the experimental data (FoamDielExt experimental database) is 0.0922 for the proposed method as against 0.1631 and 0.1037 for BP-DSM and SVBIM, respectively.
Citation
Ria Benny, Thathamkulam A. Anjit, and Palayyan Mythili, "Deep Learning Based Non-Iterative Solution to the Inverse Problem in Microwave Imaging," Progress In Electromagnetics Research M, Vol. 109, 231-240, 2022.
doi:10.2528/PIERM22010905
References

1. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402

2. Anjit, T. A., R. Benny, P. Cherian, and P. Mythili, "Non-iterative microwave imaging solutions for inverse problems using deep learning," Progress In Electromagnetics Research M, Vol. 102, 53-63, 2021.
doi:10.2528/PIERM21021304

3. Wang, F., et al. "Multi-resolution convolutional neural networks for inverse problems," Scientific Reports, Vol. 10, 1-11, 2020.
doi:10.1038/s41598-019-56847-4

4. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 4050, 1-14, 2019.

5. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 57, 1849-1860, 2019.
doi:10.1109/TGRS.2018.2869221

6. Yao, H. M., W. E. I. Sha, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 2254-2258, 2019.
doi:10.1109/LAWP.2019.2925578

7. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Trans. Image Processing, Vol. 26, 4509-4522, 2017.
doi:10.1109/TIP.2017.2713099

8. Zhang, L., K. Xu, R. Song, X. Z. Ye, G. Wang, and X. Chen, "Learning-based quantitative microwave imaging with a hybrid input scheme," IEEE Sensors Journal, Vol. 20, 15007-15013, 2020, doi: 10.1109/JSEN.2020.3012177.
doi:10.1109/JSEN.2020.3012177

9. Kak, A. C. and M. Slaney, Principles of Computerized Tomographic Imaging, Society of Industrial and Applied Mathematics, July 2001.

10. Deng, L., "The MNIST database of handwritten digit images for machine learning research," IEEE Signal Processing Magazine, Vol. 29, 141-142, 2012, doi:10.1109/MSP.2012.2211477.
doi:10.1109/MSP.2012.2211477

11. Geffrin, J.-M., P. Sabouroux, and C. Eyraoud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Probl., Vol. 21, 117-130, 2005.
doi:10.1088/0266-5611/21/6/S09

12. Li, L., et al. "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Trans. Antennas and Propag., Vol. 67, 1819-1825, 2019.
doi:10.1109/TAP.2018.2885437