1. Sharaf, M. H., A. I. Zaki, R. K. Hamad, and M. M. Omar, "A novel dual-band (38/60 GHz) patch antenna for 5G mobile handsets," Sensors, Vol. 20, No. 9, 2541, 2020.
doi:10.3390/s20092541
2. Muhammad, S., A. S. Yaro, I. Ya'u, and A. T. Salawudeen, "Design of 5G mobile millimeter wave antenna," ATBU Journal of Science, Technology and Education, Vol. 7, No. 2, 178-184, 2019.
3. Jilani, S. F. and A. Alomainy, "Millimetre wave T shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microwaves, Antennas & Propagation, Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467
4. Mallat, N. K., M. Ishtiaq, A. Ur Rehman, and A. Iqbal, "Millimeter-wave in the face of 5G communication potential applications," IETE Journal of Research, 1-9, 2020.
doi:10.1080/03772063.2020.1714489
5. Akpakwu, G. A., B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, "A survey on 5G networks for the Internet of Things: Communication technologies and challenges," IEEE Access, Vol. 6, 3619-3647, 2017.
6. Smith-Ditizio, A. A. and A. D. Smith, "Exploring the growth of wireless communications systems and challenges facing 4G networks," Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics. IGI Global, 889-902, 2019.
7. Diawuo, H. A. and Y. B. Jung, "Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1286-1290, 2018.
doi:10.1109/LAWP.2018.2842242
8. Youcheng, W., Y. Yanjiao, C. Qingxi, and P. Hucheng, "Design of a compact ultra wideband MIMO antenna," The Journal of Engineering, Vol. 2019, No. 20, 6487-6489, 2019.
doi:10.1049/joe.2019.0277
9. Liu, G. and D. Jiang, "5G: Vision and requirements for mobile communication system towards year 2020," Chinese Journal of Engineering, Vol. 2016, 8, 2016.
10. Ancans, G., V. Bobrovs, A. Ancans, and D. Kalibatiene, "Spectrum considerations for 5G mobile communication systems," Procedia Computer Science, Vol. 104, 509-516, 2017.
doi:10.1016/j.procs.2017.01.166
11. Islam, N. and A. W. A.Wahab, "5G networks: A holistic view of enabling technologies and research challenges," Enabling Technologies and Architectures for Next-Generation Networking Capabilities, 37-70, 2019.
doi:10.4018/978-1-5225-6023-4.ch002
12. Ahmed, I., H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, "A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives," IEEE Communications Surveys & Tutorials, Vol. 20, No. 4, 3060-3097, 2018.
doi:10.1109/COMST.2018.2843719
13. Bjornson, E., L. Van der Perre, S. Buzzi, and E. G. Larsson, "Massive MIMO in sub-6 GHz and mmWave: Physical, practical, and use-case differences," IEEE Wireless Communications, Vol. 26, No. 2, 100-108, 2019.
doi:10.1109/MWC.2018.1800140
14. Seker, C., T. Ozturk, and M. T. Guneser, "A single band antenna design for future millimeter wave wireless communication at 38 GHz," European Journal of Engineering and Formal Sciences, Vol. 2, No. 2, 35-39, 2018.
doi:10.26417/ejef.v2i2.p35-39
15. Ghazaoui, Y., A. El Alami, M. El Ghzaoui, S. Das, D. Barad, and S. Mohapatra, "Millimeter wave antenna with enhanced bandwidth for 5G wireless application," Journal of Instrumentation, Vol. 15, No. 01, T01003, 2020.
doi:10.1088/1748-0221/15/01/T01003
16. Przesmycki, R., M. Bugaj, and L. Nowosielski, "Broadband microstrip antenna for 5G wireless systems operating at 28 GHz," Electronics, Vol. 10, No. 1, 1, 2021.
doi:10.3390/electronics10010001
17. Marzouk, H. M., M. I. Ahmed, and A. A. Shaalan, "A novel dual-band 28/38 GHz AFSL MIMO antenna for 5G smartphone applications," Journal of Physics: Conference Series, Vol. 1447, No. 1, 012025, IOP Publishing, 2020.
doi:10.1088/1742-6596/1447/1/012025
18. Rahman, A., Y. Ng M, A. U. Ahmed, T. Alam, M. J. Singh, and M. T. Islam, "A compact 5G antenna printed on manganese zinc ferrite substrate material," IEICE Electronics Express, Vol. 13, No. 11, 20160377-20160377, 2016.
doi:10.1587/elex.13.20160377
19. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401
20. Park, J. S., J. B. Ko, H. K. Kwon, B. S. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514
21. Hasan, M. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019..
doi:10.1080/09205071.2019.1617790
22. Merlin Teresa, P. and G. Umamaheswari, "Compact slotted microstrip antenna for 5G applications operating at 28 GHz," IETE Journal of Research, 1-8, 2020.
doi:10.1080/03772063.2020.1779620
23. Sharma, M., A. K. Gautam, N. Singh, N. S. Garigapati, and N. Agrawal, "Design of a novel dual band printed antenna for future mobile applications," Procedia Computer Science, Vol. 171, 917-923, 2020.
doi:10.1016/j.procs.2020.04.099
24., https://www.itu.int/en/mediacentre/backgrounders/Pages/5G-fifth-generation-of-mobile-technologies.aspx, accessed on Oct. 02, 2021 at 3:00pm.
25. Ali, M. M. M. and A. R. Sebak, "Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 399-400, Jun. 2016.
doi:10.1109/APS.2016.7695908
26. Sam, C. M. and M. Mokayef, "A wide band slotted microstrip patch antenna for future 5G," EPH-International Journal of Science and Engineering, Vol. 2, No. 7, 19-23, 2016.
27. Ur-Rehman, M., M. Adekanye, and H. T. Chattha, "Tri-band millimetre-wave antenna for body-centric networks," Nano Communication Networks, Vol. 18, 72-81, 2018.
doi:10.1016/j.nancom.2018.03.003
28. Cai, T., G. M. Wang, X. F. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, "Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2306-2311, 2015.
doi:10.1109/TAP.2015.2405081
29. Yang, X. M., Q. H. Sun, Y. Jing, Q. Cheng, X. Y. Zhou, H. W. Kong, and T. J. Cui, "Increasing the bandwidth of microstrip patch antenna by loading compact artificial magneto-dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 373-378, 2010.
doi:10.1109/TAP.2010.2096388
30. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: Concept and applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1558-1567, 2004.
doi:10.1109/TAP.2004.829413
31. Kuo, C., H. Zhang, A. Sarkar, X. Yu, V. Bhagavatula, A. Verma, and T. B. Cho, "A 5G FR2 (n257/n258/n261) transmitter front-end with a temperature-invariant integrated power detector for closed-loop EIRP control," 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 175-178, Jun. 2021.
doi:10.1109/RFIC51843.2021.9490447