Vol. 108
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-02-17
Diffraction of Plane Waves by Arbitrary-Angled Coated Wedges
By
Progress In Electromagnetics Research M, Vol. 108, 103-113, 2022
Abstract
This research work deals with the plane wave diffraction by a coated perfect electrically conducting wedge with arbitrary apex angle. The uniform layer covering the impenetrable wedge is made of a standard double positive material or an unfamiliar double negative metamaterial with negative permittivity and permeability at the operating frequencies. The propagation mechanism is studied when the incidence direction is perpendicular to the edge of the composite structure, and uniform asymptotic solutions are proposed to evaluate the diffraction contribution for both the polarizations. Such approximate solutions are obtained by using the Uniform Asymptotic Physical Optics approach based on electric and magnetic equivalent surface currents radiating in the neighboring free space. The related expressions are user-friendly and provide reliable field values as verified by numerical tests involving a full-wave electromagnetic solver.
Citation
Giovanni Riccio, Gianluca Gennarelli, Flaminio Ferrara, Claudio Gennarelli, and Rocco Guerriero, "Diffraction of Plane Waves by Arbitrary-Angled Coated Wedges," Progress In Electromagnetics Research M, Vol. 108, 103-113, 2022.
doi:10.2528/PIERM22010405
References

1. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

2. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley & Sons, USA, 2006.

3. Marquez, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley & Sons, USA, 2008.

4. Sakoda, K., Electromagnetic Metamaterials: Modern Insights into Macroscopic Electromagnetic Fields, Springer, Singapore, 2019.
doi:10.1007/978-981-13-8649-7

5. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

6. Chew, W. C., "Some re ections on double negative materials," Progress In Electromagnetics Research, Vol. 51, 1-26, 2005.
doi:10.2528/PIER04032602

7. Basdemir, H. D., "Diffraction by a right angle impedance wedge between left- and right-handed media," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 7, 869-880, 2020.
doi:10.1080/09205071.2020.1759460

8. Tiberio, R., G. Pelosi, and G. Manara, "A uniform GTD formulation for the diffraction by a wedge with impedance faces," IEEE Trans. Antennas Propag., Vol. 33, 867-873, 1985.
doi:10.1109/TAP.1985.1143687

9. Senior, T. B. A. and J. L. Volakis, "Scattering by an imperfect right-angled wedge," IEEE Trans. Antennas Propag., Vol. 34, 681-689, 1986.
doi:10.1109/TAP.1986.1143864

10. Rojas, R. G., "Electromagnetic diffraction of an obliquely incident plane wave field by a wedge with impedance faces," IEEE Trans. Antennas Propag., Vol. 36, 956-970, 1988.
doi:10.1109/8.7201

11. Syed, H. H. and J. L. Volakis, "An approximate solution for scattering by an impedance wedge at skew incidence," Radio Sci., Vol. 3, 505-524, 1995.
doi:10.1029/94RS03015

12. Osipov, A. V. and T. B. A. Senior, "Diffractionby aright-angled impedance wedge," Radio Sci., Vol. 43, RS4S02, 2008.

13. Senior, T. B. A. and J. L. Volakis, "Approximate Boundary Conditions in Electromagnetics," Stevenage, IEE, 1995.

14. Daniele, V. G. and G. Lombardi, "Wiener-Hopf solution for impenetrable wedges at skew incidence," IEEE Trans. Antennas Propag., Vol. 54, 2472-2485, 2006.
doi:10.1109/TAP.2006.880723

15. Lyalinov, M. A. and N. Y. Zhu, "Diffraction of a skew incident plane electromagnetic wave by an impedance wedge," Wave Motion, Vol. 44, 21-43, 2006.
doi:10.1016/j.wavemoti.2006.06.005

16. Holm, P. D., "A new heuristic UTD diffraction coefficient for nonperfectly conducting wedge," IEEE Trans. Antennas Propag., Vol. 48, 1211-1219, 2000.
doi:10.1109/8.884489

17. El-Sallabi, H. M. and P. Vainikainen, "Improvements to diffraction coefficient for non-perfectly conducting wedges," IEEE Trans. Antennas Propag., Vol. 53, 3105-3109, 2005.
doi:10.1109/TAP.2005.854534

18. Nechayev, Y. I. and C. C. Constantinou, "Improved heuristic diffraction coefficients for an impedance wedge at normal incidence," IEE Proc. --- Microw. Antennas Propag., Vol. 153, 125-132, 2006.
doi:10.1049/ip-map:20045150

19. Ferrara, F., C. Gennarelli, R. Guerriero, G. Riccio, and C. Savarese, "A UAPO diffraction contribution to take into account the edge effects in microstrip reflectarrays," Electromagn., Vol. 26, 461-471, 2006.
doi:10.1080/02726340600837925

20. Gennarelli, G. and G. Riccio, "Diffraction by a planar metamaterial junction with PEC backing," IEEE Trans. Antennas Propag., Vol. 58, 2903-2908, 2010.
doi:10.1109/TAP.2010.2052581

21. Gennarelli, G. and G. Riccio, "A uniform asymptotic solution for diffraction by a right-angled dielectric wedge," IEEE Trans. Antennas Propag., Vol. 59, 898-903, 2011.
doi:10.1109/TAP.2010.2103031

22. Gennarelli, G. and G. Riccio, "Plane-wave diffraction by an obtuse-angled dielectric wedge," J. Opt. Soc. Am. A, Vol. 28, 627-632, 2011.
doi:10.1364/JOSAA.28.000627

23. Gennarelli, G. and G. Riccio, "Useful solutions for plane wave diffraction by dielectric slabs and wedges," Int. J. Antennas Propag., 1-7, 2012.

24. Gennarelli, G. and G. Riccio, "Diffraction by 90◦ penetrable wedges with finite conductivity," J. Opt. Soc. Am A., Vol. 31, 21-25, 2014.
doi:10.1364/JOSAA.31.000021

25. Gennarelli, G., M. Frongillo, and G. Riccio, "High-frequency evaluation of the field inside and outside an acute-angled dielectric wedge," IEEE Trans. Antennas Propag., Vol. 63, 374-378, 2015.
doi:10.1109/TAP.2014.2364305

26. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a structure composed of metallic and dielectric 90◦ blocks," IEEE Antennas Wireless Propag. Lett., Vol. 17, 881-885, 2018.
doi:10.1109/LAWP.2018.2820738

27. Frongillo, M., G. Gennarelli, and G. Riccio, "Plane wave diffraction by arbitrary-angled lossless wedges: High-frequency and time-domain solutions," IEEE Trans. Antennas Propag., Vol. 66, 6646-6653, 2018.
doi:10.1109/TAP.2018.2876602

28. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a dielectric wedge on a ground plane," Progress In Electromagnetics Research M, Vol. 82, 9-18, 2019.
doi:10.2528/PIERM19030601

29. Gennarelli, G. and G. Riccio, "On the accuracy of the UAPO solution for the diffraction by a PEC --- DNG metamaterial junction," IEEE Antennas Wireless Propag. Lett., Vol. 19, 581-585, 2020.
doi:10.1109/LAWP.2020.2972308

30. Gennarelli, G. and G. Riccio, "High-frequency diffraction contribution by planar metallic --- DNG metamatrial junctions," Int. J. Microw. Wireless Tech., 1-6, 2020.

31. Frongillo, M., G. Gennarelli, and G. Riccio, "Useful solutions for the plane wave diffraction by a con guration of dielectric and metallic acute-angled wedges," Int. J. Comm. Antennas Propag., Vol. 10, 68-75, 2020.

32. Meana, J. G., J. A. Martinez-Lorenzo, F. Las-Heras, and C. Rappaport, "Wave scattering by dielectric and lossy materials using the Modified Equivalent Current Approximation (MECA)," IEEE Trans. Antennas Propag., Vol. 58, 3757-3760, 2010.
doi:10.1109/TAP.2010.2071363

33. Meana, J. G., J. A. Martinez-Lorenzo, and F. Las-Heras, "High frequency techniques: The physical optics approximation and the Modified Equivalent Current Approximation (MECA)," Electromagnetic Waves Propagation in Complex Matter, A. Kishk (ed.), 207{230, Intech, Croatia, 2011.