1. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651
2. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley & Sons, USA, 2006.
3. Marquez, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley & Sons, USA, 2008.
4. Sakoda, K., Electromagnetic Metamaterials: Modern Insights into Macroscopic Electromagnetic Fields, Springer, Singapore, 2019.
doi:10.1007/978-981-13-8649-7
5. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101
6. Chew, W. C., "Some re ections on double negative materials," Progress In Electromagnetics Research, Vol. 51, 1-26, 2005.
doi:10.2528/PIER04032602
7. Basdemir, H. D., "Diffraction by a right angle impedance wedge between left- and right-handed media," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 7, 869-880, 2020.
doi:10.1080/09205071.2020.1759460
8. Tiberio, R., G. Pelosi, and G. Manara, "A uniform GTD formulation for the diffraction by a wedge with impedance faces," IEEE Trans. Antennas Propag., Vol. 33, 867-873, 1985.
doi:10.1109/TAP.1985.1143687
9. Senior, T. B. A. and J. L. Volakis, "Scattering by an imperfect right-angled wedge," IEEE Trans. Antennas Propag., Vol. 34, 681-689, 1986.
doi:10.1109/TAP.1986.1143864
10. Rojas, R. G., "Electromagnetic diffraction of an obliquely incident plane wave field by a wedge with impedance faces," IEEE Trans. Antennas Propag., Vol. 36, 956-970, 1988.
doi:10.1109/8.7201
11. Syed, H. H. and J. L. Volakis, "An approximate solution for scattering by an impedance wedge at skew incidence," Radio Sci., Vol. 3, 505-524, 1995.
doi:10.1029/94RS03015
12. Osipov, A. V. and T. B. A. Senior, "Diffractionby aright-angled impedance wedge," Radio Sci., Vol. 43, RS4S02, 2008.
13. Senior, T. B. A. and J. L. Volakis, "Approximate Boundary Conditions in Electromagnetics," Stevenage, IEE, 1995.
14. Daniele, V. G. and G. Lombardi, "Wiener-Hopf solution for impenetrable wedges at skew incidence," IEEE Trans. Antennas Propag., Vol. 54, 2472-2485, 2006.
doi:10.1109/TAP.2006.880723
15. Lyalinov, M. A. and N. Y. Zhu, "Diffraction of a skew incident plane electromagnetic wave by an impedance wedge," Wave Motion, Vol. 44, 21-43, 2006.
doi:10.1016/j.wavemoti.2006.06.005
16. Holm, P. D., "A new heuristic UTD diffraction coefficient for nonperfectly conducting wedge," IEEE Trans. Antennas Propag., Vol. 48, 1211-1219, 2000.
doi:10.1109/8.884489
17. El-Sallabi, H. M. and P. Vainikainen, "Improvements to diffraction coefficient for non-perfectly conducting wedges," IEEE Trans. Antennas Propag., Vol. 53, 3105-3109, 2005.
doi:10.1109/TAP.2005.854534
18. Nechayev, Y. I. and C. C. Constantinou, "Improved heuristic diffraction coefficients for an impedance wedge at normal incidence," IEE Proc. --- Microw. Antennas Propag., Vol. 153, 125-132, 2006.
doi:10.1049/ip-map:20045150
19. Ferrara, F., C. Gennarelli, R. Guerriero, G. Riccio, and C. Savarese, "A UAPO diffraction contribution to take into account the edge effects in microstrip reflectarrays," Electromagn., Vol. 26, 461-471, 2006.
doi:10.1080/02726340600837925
20. Gennarelli, G. and G. Riccio, "Diffraction by a planar metamaterial junction with PEC backing," IEEE Trans. Antennas Propag., Vol. 58, 2903-2908, 2010.
doi:10.1109/TAP.2010.2052581
21. Gennarelli, G. and G. Riccio, "A uniform asymptotic solution for diffraction by a right-angled dielectric wedge," IEEE Trans. Antennas Propag., Vol. 59, 898-903, 2011.
doi:10.1109/TAP.2010.2103031
22. Gennarelli, G. and G. Riccio, "Plane-wave diffraction by an obtuse-angled dielectric wedge," J. Opt. Soc. Am. A, Vol. 28, 627-632, 2011.
doi:10.1364/JOSAA.28.000627
23. Gennarelli, G. and G. Riccio, "Useful solutions for plane wave diffraction by dielectric slabs and wedges," Int. J. Antennas Propag., 1-7, 2012.
24. Gennarelli, G. and G. Riccio, "Diffraction by 90◦ penetrable wedges with finite conductivity," J. Opt. Soc. Am A., Vol. 31, 21-25, 2014.
doi:10.1364/JOSAA.31.000021
25. Gennarelli, G., M. Frongillo, and G. Riccio, "High-frequency evaluation of the field inside and outside an acute-angled dielectric wedge," IEEE Trans. Antennas Propag., Vol. 63, 374-378, 2015.
doi:10.1109/TAP.2014.2364305
26. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a structure composed of metallic and dielectric 90◦ blocks," IEEE Antennas Wireless Propag. Lett., Vol. 17, 881-885, 2018.
doi:10.1109/LAWP.2018.2820738
27. Frongillo, M., G. Gennarelli, and G. Riccio, "Plane wave diffraction by arbitrary-angled lossless wedges: High-frequency and time-domain solutions," IEEE Trans. Antennas Propag., Vol. 66, 6646-6653, 2018.
doi:10.1109/TAP.2018.2876602
28. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a dielectric wedge on a ground plane," Progress In Electromagnetics Research M, Vol. 82, 9-18, 2019.
doi:10.2528/PIERM19030601
29. Gennarelli, G. and G. Riccio, "On the accuracy of the UAPO solution for the diffraction by a PEC --- DNG metamaterial junction," IEEE Antennas Wireless Propag. Lett., Vol. 19, 581-585, 2020.
doi:10.1109/LAWP.2020.2972308
30. Gennarelli, G. and G. Riccio, "High-frequency diffraction contribution by planar metallic --- DNG metamatrial junctions," Int. J. Microw. Wireless Tech., 1-6, 2020.
31. Frongillo, M., G. Gennarelli, and G. Riccio, "Useful solutions for the plane wave diffraction by a conguration of dielectric and metallic acute-angled wedges," Int. J. Comm. Antennas Propag., Vol. 10, 68-75, 2020.
32. Meana, J. G., J. A. Martinez-Lorenzo, F. Las-Heras, and C. Rappaport, "Wave scattering by dielectric and lossy materials using the Modified Equivalent Current Approximation (MECA)," IEEE Trans. Antennas Propag., Vol. 58, 3757-3760, 2010.
doi:10.1109/TAP.2010.2071363
33. Meana, J. G., J. A. Martinez-Lorenzo, and F. Las-Heras, "High frequency techniques: The physical optics approximation and the Modified Equivalent Current Approximation (MECA)," Electromagnetic Waves Propagation in Complex Matter, A. Kishk (ed.), 207{230, Intech, Croatia, 2011.