Vol. 172
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-12-31
Wideband High-Reflection Chiral Dielectric Metasurface
By
Progress In Electromagnetics Research, Vol. 172, 51-60, 2021
Abstract
Compared to natural materials, artificial subwavelength structures can enhance chiroptical effects in a stronger way, and the requirement of low material loss and wideband operation is desired in many situations. Here, we propose an all-dielectric chiral metasurface as a periodic array of centrosymmetric staggered silicon cuboid pairs to achieve strong circular dichroism in a wide band. As a demonstration, the designed chiral metasurface may strongly reflect the chosen circularly polarized light with the spin preserved in the operating wavelength range of 1.51~1.60 um while highly transmit (with an efficiency greater than 95%) the opposite circularly polarized light with the spin flipped. Then, two application cases are given for the designed chiral metasurface. A flat chiral meta-lens is constructed to produce wideband focusing in the transmission/reflection side while the disturbing from the opposite circular polarization is well blocked by high reflection/transmission. A chiral Fabry-Perot cavity is also constructed, which has an extremely high quality factor (2.1E4). The proposed method provides an efficient way to produce strong chiroptical effects and has a promising potential for various applications such as signal processing, sensing, radiation and detection.
Citation
Zhipeng Hu, Nan He, Yuwei Sun, Yi Jin, and Sailing He, "Wideband High-Reflection Chiral Dielectric Metasurface," Progress In Electromagnetics Research, Vol. 172, 51-60, 2021.
doi:10.2528/PIER21121903
References

1. Ben-Moshe, A., B. M. Maoz, A. O. Govorov, and G. Markovich, "Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances," Chemical Society Reviews, Vol. 42, No. 16, 7028-7041, 2013.
doi:10.1039/c3cs60139k

2. Collins, J. T., C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, and V. K. Valev, "Chirality and chiroptical effects in metal nanostructures: Fundamentals and current trends," Advanced Optical Materials, Vol. 5, No. 16, 1700182, 2017.
doi:10.1002/adom.201700182

3. Valev, V. K., J. J. Baumberg, C. Sibilia, and T. Verbiest, "Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook," Advanced Materials, Vol. 25, No. 18, 2517-2534, 2013.
doi:10.1002/adma.201205178

4. Tang, Y. Q. and A. E. Cohen, "Optical chirality and its interaction with matter," Physical Review Letters, Vol. 104, No. 16, 163901, 2010.
doi:10.1103/PhysRevLett.104.163901

5. Zhao, Y., A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, "Chirality detection of enantiomers using twisted optical metamaterials," Nature Communications, Vol. 8, No. 1, 14180, 2017.
doi:10.1038/ncomms14180

6. Khanikaev, A. B., N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, and M. A. Belkin, "Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials," Nature Communications, Vol. 7, No. 1, 12045, 2016.
doi:10.1038/ncomms12045

7. Poulikakos, L. V., P. Thureja, A. Stollmann, E. D. Leo, and D. J. Norris, "Chiral light design and detection inspired by optical antenna theory," Nano Letters, Vol. 18, No. 8, 4633-4640, 2018.
doi:10.1021/acs.nanolett.8b00083

8. Lin, C. Y., C. C. Liu, Y. Y. Chen, K. Y. Chiu, J. D. Wu, B. L. Lin, H. W. Chang, Y. F. Chen, S. H. Chang, and Y. C. Chang, "Molecular chirality detection with periodic arrays of three-dimensional twisted metamaterials," ACS Applied Materials & Interfaces, Vol. 13, No. 1, 1152-1157, 2021.
doi:10.1021/acsami.0c16256

9. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
doi:10.1126/science.1177031

10. Esposito, M., V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, "Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies," ACS Photonics, Vol. 2, No. 1, 105-114, 2015.
doi:10.1021/ph500318p

11. Tseng, M. L., Z. H. Lin, H. Y. Kuo, T. T. Huang, Y. T. Huang, T. L. Chung, C. H. Chu, J. S. Huang, and D. P. Tsai, "Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality," Advanced Optical Materials, Vol. 7, No. 15, 1900617, 2019.
doi:10.1002/adom.201900617

12. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Physical Review Letters, Vol. 97, No. 16, 167401, 2006.
doi:10.1103/PhysRevLett.97.167401

13. Fedotov, V. A., A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Letters, Vol. 7, No. 7, 1996-1999, 2007.
doi:10.1021/nl0707961

14. Schwanecke, A. S., V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, "Nanostructured metal film with asymmetric optical transmission," Nano Letters, Vol. 8, No. 9, 2940-2943, 2008.
doi:10.1021/nl801794d

15. Najafabadi, A. F. and T. Pakizeh, "Optical absorbing origin of chiroptical activity in planar plasmonic metasurfaces," Scientific Reports, Vol. 7, No. 1, 10251, 2017.
doi:10.1038/s41598-017-10532-6

16. Ye, W., X. Yuan, C. Guo, J. Zhang, and Z. Shuang, "Large chiroptical effects in planar chiral metamaterials," Physical Review Applied, Vol. 7, No. 5, 54003, 2017.
doi:10.1103/PhysRevApplied.7.054003

17. Ullah, H., A. Abudukelimu, Y. Qu, Y. Bai, T. Aba, and Z. Zhang, "Giant circular dichroism of chiral l-shaped nanostructure coupled with achiral nanorod: Anomalous behavior of multipolar and dipolar resonant modes," Nanotechnology, Vol. 31, No. 27, 275205, 2020.
doi:10.1088/1361-6528/ab84a1

18. Kong, X. T., L. K. Khorashad, Z. Wang, and A. O. Govorov, "Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers," Nano Letters, Vol. 18, No. 3, 2001-2008, 2018.
doi:10.1021/acs.nanolett.7b05446

19. Chen, X., L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, "Dual-polarity plasmonic metalens for visible light," Nature Communications, Vol. 3, No. 1, 1198, 2012.
doi:10.1038/ncomms2207

20. Ma, Z., Y. Li, L. Yang, Y. Gong, and M. Hong, "All-dielectric planar chiral metasurface with gradient geometric phase," Optics Express, Vol. 26, No. 5, 6067-6078, 2018.
doi:10.1364/OE.26.006067

21. Solomon, M. L., A. A. E. Saleh, L. V. Poulikakos, J. M. Abendroth, and J. A. Dionne, "Nanophotonic platforms for chiral sensing and separation," Accounts of Chemical Research, Vol. 53, No. 3, 588-598, 2020.
doi:10.1021/acs.accounts.9b00460

22. Rana, A. S., I. Kim, M. A. Ansari, M. S. Anwar, and J. Rho, "Planar achiral metasurfaces-induced anomalous chiroptical effect of optical spin isolation," ACS Applied Materials & Interfaces, Vol. 12, No. 43, 48899-48909, 2020.
doi:10.1021/acsami.0c10006

23. Semnani, B., J. Flannery, R. A. Maruf, and M. Bajcsy, "Spin-preserving chiral photonic crystal mirror," Light-Science & Applications, Vol. 9, No. 1, 23, 2020.
doi:10.1038/s41377-020-0256-5

24. Chen, C., S. Gao, W. Song, H. Li, and T. Li, "Metasurfaces with planar chiral meta-atoms for spin light manipulation," Nano Letters, Vol. 21, No. 4, 1815-1821, 2021.
doi:10.1021/acs.nanolett.0c04902

25. Wang, S., Z. L. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B. O. Guan, S. Xiao, and X. Li, "Arbitrary polarization conversion dichroism metasurfaces for all-in-one full poincaré sphere polarizers," Light-Science & Applications, Vol. 10, No. 1, 24, 2021.
doi:10.1038/s41377-021-00468-y

26. Hu, J. P., C. Zhang, Y. G. Dong, A. J. Zeng, and C. H. Wang, "High efficiency all-dielectric pixelated metasurface for near-infrared full-stokes polarization detection," Photonics Research, Vol. 9, No. 4, 4000583, 2021.
doi:10.1364/PRJ.416342

27. Li, J., J. T. Li, C. L. Zheng, Y. Yang, Z. Yue, X. R. Hao, H. L. Zhao, F. Y. Li, T. T. Tang, L. Wu, J. N. Li, Y. T. Zhang, and J. Q. Yao, "Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave," Opt. Express, Vol. 29, 28329-28337, 2021.
doi:10.1364/OE.430033

28. Plum, E. and N. I. Zheludev, "Chiral mirrors," Applied Physics Letters, Vol. 106, No. 22, 775-388, 2015.
doi:10.1063/1.4921969

29. Solomon, M. L., A. A. E. Saleh, L. V. Poulikakos, J. M. Abendroth, and J. A. Dionne, "Nanophotonic platforms for chiral sensing and separation," Accounts of Chemical Research, Vol. 53, No. 3, 588-598, 2020.
doi:10.1021/acs.accounts.9b00460

30. Bochenkov, V. E. and T. I. Shabatina, "Chiral plasmonic biosensors," Biosensors, Vol. 8, No. 4, 120, 2018.
doi:10.3390/bios8040120

31. Collett, A. E., Field Guide to Polarization, SPIE Press, 2005.
doi:10.1117/3.626141

32. Karagodsky, V., F. G. Sedgwick, and C. J. Chang-Hasnain, "Theoretical analysis of subwavelength high contrast grating reflectors," Optics Express, Vol. 18, No. 16, 16973-16988, 2010.
doi:10.1364/OE.18.016973