Vol. 109
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-01
Development of Ground-Based SFCW-ArcSAR System and Investigation on Point Target Response
By
Progress In Electromagnetics Research M, Vol. 109, 137-148, 2022
Abstract
Arc synthetic aperture radar (ArcSAR) forms the synthetic aperture through uniform circular motion with antenna pointed outwards circular trajectory, so the point target response is different from traditional linear SAR and Circular SAR (CSAR). Due to the unique imaging mode, ArcSAR has the characteristics of large field of view and constant azimuth angular resolution. The ArcSAR system is built by vector network analyzer (VNA), rotating platform, standard gain horn antenna, and computer, and the system transmits stepped frequency continuous wave (SFCW). A Qt-based GUI is designed to realize the accurate and convenient remote control of the system. An outdoor imaging experiment was carried out with a corner reflector to investigate the point target response of SFCW-ArcSAR which has unique forms in Cartesian coordinate and cylindrical coordinate systems. In order to avoid the additional phase error introduced by coordinate transformation based on interpolation, back projection (BP) algorithm is applied in Cartesian coordinate system and cylindrical coordinate system, respectively. The point target response presents a 2-D sinc function in cylindrical coordinate system. The azimuth angular resolution is 0.0175 rad under the experimental condition of 1.9 m-rotating radius and 16˚ antenna beamwidth. The simulation results agree with measured ones, which prove the validity of SFCW-ArcSAR system and correctness of theoretical analysis. The imaging result based on BP algorithm and corner reflector can be used to evaluate other ArcSAR imaging algorithms.
Citation
Zhuoyan Gao, Yan Jia, Shuyi Liu, and Xiangkun Zhang, "Development of Ground-Based SFCW-ArcSAR System and Investigation on Point Target Response," Progress In Electromagnetics Research M, Vol. 109, 137-148, 2022.
doi:10.2528/PIERM21121702
References

1. Monserrat, O., M. Crosetto, and G. Luzi, "A review of ground-based SAR interferometry for deformation measurement," ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 93, 40-48, 2014.
doi:10.1016/j.isprsjprs.2014.04.001

2. Pieraccini, M. and L. Miccinesi, "Ground-based radar interferometry: A bibliographic review," Remote Sensing, Vol. 11, No. 9, 1029, 2019.
doi:10.3390/rs11091029

3. Wang, Y., W. Hong, Y. Zhang, et al. "Ground-based differential interferometry SAR: A review," IEEE Geoscience and Remote Sensing Magazine, Vol. 8, No. 1, 43-70, 2020.
doi:10.1109/MGRS.2019.2963169

4. Frodella, W., A. Ciampalini, F. Bardi, et al. "A method for assessing and managing landslide residual hazard in urban areas," Landslides, Vol. 15, 183-197, 2018.
doi:10.1007/s10346-017-0875-y

5. Pieraccini, M., N. Rojhani, and L. Miccinesi, "Compressive sensing for ground based synthetic aperture radar," Remote Sensing, Vol. 10, No. 12, 1960, 2018.
doi:10.3390/rs10121960

6. Luzi, G., M. Pieraccini, D. Mecatti, et al. "Monitoring of an alpine glacier by means of ground-based SAR interferometry," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 3, 495-499, 2007.
doi:10.1109/LGRS.2007.898282

7. Nico, G., G. Prezioso, O. Masci, and Y. Izumi, "Monitoring strategies of displacements and vibration frequencies by ground-based radar interferometry," Communications in Computer and Information Science, Vol. 1246, 374-379, 2019.

8. Calvari, S., E. Intrieri, F. D. Traglia, et al. "Monitoring crater-wall collapse at active volcanoes: A study of the 12 January 2013 event at Stromboli," Bulletin of Volcanology, Vol. 78, No. 5, 1-16, 2016.
doi:10.1007/s00445-016-1033-4

9. Pieraccini, M. and L. Miccinesi, "An interferometric MIMO radar for bridge monitoring," IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 9, 1383-1387, Sept. 2019.
doi:10.1109/LGRS.2019.2900405

10. Tarchi, D., F. Oliveri, and P. F. Sammartino, "MIMO radar and ground-based SAR imaging systems: Equivalent approaches for remote sensing," IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 1, 425-435, 2013.
doi:10.1109/TGRS.2012.2199120

11. Ponce, O., et al. "Fully polarimetric high-resolution 3-D imaging with circular SAR at L-band," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 6, 3074-3090, Jun. 2014.
doi:10.1109/TGRS.2013.2269194

12. Jia, G., W. Chang, Q. Zhang, and X. Luan, "The analysis and realization of motion compensation for circular synthetic aperture radar data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 7, 3060-3071, Jul. 2016.
doi:10.1109/JSTARS.2016.2553051

13. Viviani, F., A. Michelini, L. Mayer, and F. Conni, "IBIS-ArcSAR: An innovative ground-based SAR system for slope monitoring," IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 1348-1351, 2018.
doi:10.1109/IGARSS.2018.8517702

14. Michelini, A., F. Viviani, and L. Mayer, "Introduction to IBIS-ArcSAR: A circular scanning GB-SAR system for deformation monitoring," Proceedings of the 4th Joint International Symposium on Deformation Monitoring (JISDM), 15-17, Athens, Greece, 2019.

15. Lee, H., J. Lee, K. Kim, N. Sung, and S. Cho, "Development of a truck-mounted Arc-scanning synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 5, 2773-2779, May 2014.
doi:10.1109/TGRS.2013.2265700

16. Luo, Y., H. Song, R. Wang, Y. Deng, F. Zhao, and Z. Xu, "Arc FMCW SAR and applications in ground monitoring," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 9, 5989-5998, Sept. 2014.
doi:10.1109/TGRS.2014.2325905

17. Lin, Y., Y. Liu, Y. Wang, S. Ye, Y. Zhang, Y. Li, W. Li, H. Qu, and W. Hong, "Frequency domain panoramic imaging algorithm for ground-based ArcSAR," Sensors, Vol. 20, No. 24, 7027, 2020.
doi:10.3390/s20247027

18. Pieraccini, M., G. Luzi, and C. Atzeni, "Terrain mapping by ground-based interferometric radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 10, 2176-2181, Oct. 2001.
doi:10.1109/36.957280

19. Desai, M. D. and W. K. Jenkins, "Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar," IEEE Transactions on Image Processing, Vol. 1, No. 4, 505-517, Oct. 1992.
doi:10.1109/83.199920

20. Ulander, L. M. H., H. Hellsten, and G. Stenstrom, "Synthetic-aperture radar processing using fast factorized back-projection," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 3, 760-776, Jul. 2003.
doi:10.1109/TAES.2003.1238734

21. Iker, H. and C. Zdemir, "Adaptation of stepped frequency continuous waveform to range-Doppler algorithm for SAR signal processing," Digital Signal Processing, Vol. 106, No. 4, 102826, 2020.
doi:10.1016/j.dsp.2020.102826

22. Soumekh, M., Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, 1999.

23. Hanssen, R., R. Bamler, et al. "Evaluation of interpolation kernels for SAR interferometry," IEEE Transactions on Geoscience & Remote Sensing, Vol. 37, No. 1, 318-321, 1999.
doi:10.1109/36.739168

24. Pieraccini, M. and L. Miccinesi, "ArcSAR: Theory, simulations, and experimental verification," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 1, 293-301, Jan. 2017.
doi:10.1109/TMTT.2016.2613926

25. Yigit, E., "Short-range ground-based synthetic aperture radar imaging: Performance comparison between frequency-wavenumber migration and back-projection algorithms," Journal of Applied Remote Sensing, Vol. 7, No. 1, 073483, 2013.
doi:10.1117/1.JRS.7.073483

26. Cumming, I. G. and F. H. Wong, Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, 2004.