1. Pang, Y., Y. Li, J. Wang, M. Yan, S. Qu, S. Xia, and Z. Xu, "Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms," Carbon, Vol. 147, 112-119, 2019.
doi:10.1016/j.carbon.2019.03.004
2. Zhang, Y., Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, "Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam," Advanced Materials, Vol. 27, 2049-2053, 2015.
doi:10.1002/adma.201405788
3. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 48, 1230-1234, 2000.
doi:10.1109/8.884491
4. Lee, D., S. So, G. Hu, M. Kim, T. Badloe, H. Cho, J. Kim, H. Kim, C. Qiu, and J. Rho, "Hyperbolic metamaterials: Fusing artificial structures to natural 2D materials," eLight, Vol. 2, 1, 2022.
doi:10.1186/s43593-021-00008-6
5. Yu, N., P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
doi:10.1126/science.1210713
6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
7. Yu, P., L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, "Broadband metamaterial absorbers," Advanced Optical Materials, Vol. 7, 1800995, 2019.
doi:10.1002/adom.201800995
8. Cui, T., M. Qi, X. Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Application, Vol. 3, e218, 2014.
doi:10.1038/lsa.2014.99
9. Liang, L., M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H. Chen, L. Kang, W. Xu, J. Chen, T. Cui, and P., "Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials," Advanced Optical Materials, Vol. 3, 1374-1380, 2015.
doi:10.1002/adom.201500206
10. Li, Y., W. Li, Y. Wang, J. Cao, and J. Guan, "Refractory metamaterial microwave absorber with strong absorption insensitive to temperature," Advanced Optical Materials, Vol. 6, 1800691, 2018.
doi:10.1002/adom.201800691
11. Shao, T., H. Ma, J. Wang, M. Yan, M. Feng, Z. Yang, Q. Zhou, J. Wang, Y. Meng, S. Zhao, and S. Qu, "Ultra-thin and high temperature NiCrAlY alloy metamaterial enhanced radar absorbing coating," Journal of Alloys and Compounds, Vol. 832, 154945, 2020.
doi:10.1016/j.jallcom.2020.154945
12. Yang, Z., F. Luo, W. Zhou, H. Jia, and D. Zhu, "Design of a thin and broadband microwave absorber using double layer frequency selective surface," Journal of Alloys and Compounds, Vol. 699, 534-539, 2017.
doi:10.1016/j.jallcom.2017.01.019
13. Tian, H., H. Liu, and H. Cheng, "A high-temperature radar absorbing structure: Design, fabrication, and characterization," Composites Science and Technology, Vol. 90, 202-208, 2014.
doi:10.1016/j.compscitech.2013.11.013
14. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T.-J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 146, 71-76, 2014.
doi:10.2528/PIER14022606
15. Zhou, Y., Y. Yang, J. Xie, H. Chen, G. Zhang, F. Li, L. Zhang, X. Wang, X. Weng, P. Zhou, and L. Deng, "Broadband RCS reduction for electrically-large open-ended cavity using random coding metasurfaces," Journal of Physics D: Applied Physics, Vol. 52, 315-303, 2019.
16. Sun, L., X. Wang, Z. Yu, J. Huang, and L. Deng, "Patterned AlN ceramic for high-temperature broadband reflection reduction," Journal of Physics D: Applied Physics, Vol. 52, 235102, 2019.
doi:10.1088/1361-6463/ab105e
17. Xie, X., M. Pu, Y. Huang, X. Ma, X. Li, Y. Guo, and X. Luo, "Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field," Advanced Materials Technologies, Vol. 4, 1800612, 2019.
doi:10.1002/admt.201800612
18. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical Review Letters, Vol. 99, 063908, 2007.
doi:10.1103/PhysRevLett.99.063908
19. Li, F., L. Zhang, P. Zhou, H. Chen, R. Zhao, Y. Zhou, D. Liang, H. Lu, and L. Deng, "Dual-band reflective polarization converter based on slotted wire resonators," Applied Physics B: Lasers and Optics, Vol. 124, 28, 2018.
doi:10.1007/s00340-018-6900-6
20. Nama, L., Nilotpal, S. Bhattacharyya, and P. K. Jain, "A metasurface-based, ultrathin, dual-band, linear-to-circular, reflective polarization converter," IEEE Antennas and Propagation Magazine, Vol. 63, 100-110, 2021.
doi:10.1109/MAP.2020.3043460
21. Huang, X., D. Yang, and H. Yang, "Multiple-band reflective polarization converter using U-shaped metamaterial," Journal of Applied Physics, Vol. 115, 103505, 2014.
doi:10.1063/1.4868076
22. Shi, H., J. Li, A. Zhang, J. Wang, and Z. Xu, "Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity," Optics Express, Vol. 22, 20973-20981, 2014.
doi:10.1364/OE.22.020973
23. Loncar, J., A. Grbic, and S. Hrabar, "A reflective polarization converting metasurface at X-band frequencies," IEEE Transactions on Antennas and Propagation, Vol. 66, 3213-3218, 2018.
doi:10.1109/TAP.2018.2816784
24. Lin, B., B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, "Dual-band high-efficiency polarization converter using an anisotropic metasurface," Journal of Applied Physics, Vol. 119, 183103, 2016.
doi:10.1063/1.4948957
25. Chen, H., J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, Vol. 115, 154504, 2014.
doi:10.1063/1.4869917
26. Jia, Y., Y. Liu, W. Zhang, and S. Gong, "Ultra-wideband and high-efficiency polarization rotator based on metasurface," Applied Physics Letters, Vol. 109, 051901, 2016.
doi:10.1063/1.4960355
27. Jiang, W., Y. Xue, and S.-X. Gong, "Polarization conversion metasurface for broadband radar cross section reduction," Progress In Electromagnetics Research Letters, Vol. 62, 9-15, 2016.
doi:10.2528/PIERL16060504
28. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 64, 179-188, 2016.
doi:10.1109/TAP.2015.2502981
29. Long, M., W. Jiang, and S. Gong, "Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface," IEEE Antennas Wireless and Propagation Letters, Vol. 16, 2534, 2017.
doi:10.1109/LAWP.2017.2731862
30. Khalaj-Amirhosseini, M. and M. Khanjarian, "Radar cross section reduction using polarization cancellation approach," Progress In Electromagnetics Research Letters, Vol. 74, 107-110, 2018.
doi:10.2528/PIERL18020401
31. Al-Nuaimi, M. K. T., W. Hong, and Y. He, "Design of diffusive modified chessboard metasurface," IEEE Antennas Wireless and Propagation Letters, Vol. 18, 1621-1625, 2019.
doi:10.1109/LAWP.2019.2925378
32. Zhou, Y., X. Cao, J. Gao, H. Yang, and S. Li, "Reconfigurable metasurface for multiple functions: Magnitude, polarization and phase modulation," Optics Express, Vol. 26, 29451-29459, 2018.
doi:10.1364/OE.26.029451
33. Yang, J., Y. Cheng, D. Qi, and R. Gong, "Study of energy scattering relation and RCS reduction characteristic of matrix-type coding metasurface," Applied Sciences-Basel, Vol. 8, 1231, 2018.
doi:10.3390/app8081231
34. Liu, Y., Y. Jia, W. Zhang, and F. Li, "Wideband RCS reduction of a slot array antenna using a hybrid metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, 3644-3652, 2020.
doi:10.1109/TAP.2019.2963575
35. Xu, J., R. Li, S. Wang, and T. Han, "Ultra-broadband linear polarization converter based on anisotropic metasurface," Optics Express, Vol. 26, 26235-26241, 2018.
doi:10.1364/OE.26.026235
36. Hu, C., X. Li, Q. Feng, X. Chen, and X. Luo, "Investigation on the role of the dielectric loss in metamaterial absorber," Optics Express, Vol. 18, 6598-6603, 2010.
doi:10.1364/OE.18.006598
37. Zhang, L., S. Liu, L. Li, and T. Cui, "Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces," ACS Applied Materials & Interfaces, Vol. 9, 36447-36455, 2017.
doi:10.1021/acsami.7b12468
38. Al-Nuaimi, M. K. T., Y. He, and W. Hong, "Design of 1-bit coding engineered reflectors for EM-wave shaping and RCS modifications," IEEE Access, Vol. 6, 75422-75428, 2018.
doi:10.1109/ACCESS.2018.2883721
39. Chen, Z. and M. Segev, "Highlighting photonics: Looking into the next decade," eLight, Vol. 1, No. 2, 2021.