Vol. 173
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-02-08
An Ultra-Thin Wideband Reflection Reduction Metasurface Based on Polarization Conversion
By
Progress In Electromagnetics Research, Vol. 173, 1-8, 2022
Abstract
Reflection reduction metasurface is capable of suppressing the radar cross section of a target, which is of great importance in stealth technology. However, it is still a challenge to realize broadband and low-profile simultaneously within a simple design. Here, we experimentally demonstrate an ultra-thin wideband reflection reduction metasurface, which is achieved by utilizing polarization conversion instead of resonant absorption. The simple cut-wire unit cell is adopted to perform efficient cross polarization conversion, which leads to a polarization conversion ratio above 90% ranging from 8.4 to 14.7 GHz. By arranging the 0/1 units in chessboard layout, the reflection reduction reaches 10\,dB from 8.1 GHz to 14.6 GHz. Measured results agree well with simulated ones, which validates the effectiveness of the proposed structure. The ratio of thickness to maximum wavelength reaches 0.56 while the relative bandwidth reaches 57.3%, demonstrating an excellent comprehensive performance. Since our structure consists of refractory ceramic materials, it is promising for radar cross section reduction in high temperature environment.
Citation
Tiancheng Han, Kaihuai Wen, Zixuan Xie, and Xiuli Yue, "An Ultra-Thin Wideband Reflection Reduction Metasurface Based on Polarization Conversion," Progress In Electromagnetics Research, Vol. 173, 1-8, 2022.
doi:10.2528/PIER21121405
References

1. Pang, Y., Y. Li, J. Wang, M. Yan, S. Qu, S. Xia, and Z. Xu, "Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms," Carbon, Vol. 147, 112-119, 2019.
doi:10.1016/j.carbon.2019.03.004

2. Zhang, Y., Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, "Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam," Advanced Materials, Vol. 27, 2049-2053, 2015.
doi:10.1002/adma.201405788

3. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 48, 1230-1234, 2000.
doi:10.1109/8.884491

4. Lee, D., S. So, G. Hu, M. Kim, T. Badloe, H. Cho, J. Kim, H. Kim, C. Qiu, and J. Rho, "Hyperbolic metamaterials: Fusing artificial structures to natural 2D materials," eLight, Vol. 2, 1, 2022.
doi:10.1186/s43593-021-00008-6

5. Yu, N., P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
doi:10.1126/science.1210713

6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

7. Yu, P., L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, "Broadband metamaterial absorbers," Advanced Optical Materials, Vol. 7, 1800995, 2019.
doi:10.1002/adom.201800995

8. Cui, T., M. Qi, X. Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Application, Vol. 3, e218, 2014.
doi:10.1038/lsa.2014.99

9. Liang, L., M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H. Chen, L. Kang, W. Xu, J. Chen, T. Cui, and P., "Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials," Advanced Optical Materials, Vol. 3, 1374-1380, 2015.
doi:10.1002/adom.201500206

10. Li, Y., W. Li, Y. Wang, J. Cao, and J. Guan, "Refractory metamaterial microwave absorber with strong absorption insensitive to temperature," Advanced Optical Materials, Vol. 6, 1800691, 2018.
doi:10.1002/adom.201800691

11. Shao, T., H. Ma, J. Wang, M. Yan, M. Feng, Z. Yang, Q. Zhou, J. Wang, Y. Meng, S. Zhao, and S. Qu, "Ultra-thin and high temperature NiCrAlY alloy metamaterial enhanced radar absorbing coating," Journal of Alloys and Compounds, Vol. 832, 154945, 2020.
doi:10.1016/j.jallcom.2020.154945

12. Yang, Z., F. Luo, W. Zhou, H. Jia, and D. Zhu, "Design of a thin and broadband microwave absorber using double layer frequency selective surface," Journal of Alloys and Compounds, Vol. 699, 534-539, 2017.
doi:10.1016/j.jallcom.2017.01.019

13. Tian, H., H. Liu, and H. Cheng, "A high-temperature radar absorbing structure: Design, fabrication, and characterization," Composites Science and Technology, Vol. 90, 202-208, 2014.
doi:10.1016/j.compscitech.2013.11.013

14. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T.-J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 146, 71-76, 2014.
doi:10.2528/PIER14022606

15. Zhou, Y., Y. Yang, J. Xie, H. Chen, G. Zhang, F. Li, L. Zhang, X. Wang, X. Weng, P. Zhou, and L. Deng, "Broadband RCS reduction for electrically-large open-ended cavity using random coding metasurfaces," Journal of Physics D: Applied Physics, Vol. 52, 315-303, 2019.

16. Sun, L., X. Wang, Z. Yu, J. Huang, and L. Deng, "Patterned AlN ceramic for high-temperature broadband reflection reduction," Journal of Physics D: Applied Physics, Vol. 52, 235102, 2019.
doi:10.1088/1361-6463/ab105e

17. Xie, X., M. Pu, Y. Huang, X. Ma, X. Li, Y. Guo, and X. Luo, "Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field," Advanced Materials Technologies, Vol. 4, 1800612, 2019.
doi:10.1002/admt.201800612

18. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical Review Letters, Vol. 99, 063908, 2007.
doi:10.1103/PhysRevLett.99.063908

19. Li, F., L. Zhang, P. Zhou, H. Chen, R. Zhao, Y. Zhou, D. Liang, H. Lu, and L. Deng, "Dual-band reflective polarization converter based on slotted wire resonators," Applied Physics B: Lasers and Optics, Vol. 124, 28, 2018.
doi:10.1007/s00340-018-6900-6

20. Nama, L., Nilotpal, S. Bhattacharyya, and P. K. Jain, "A metasurface-based, ultrathin, dual-band, linear-to-circular, reflective polarization converter," IEEE Antennas and Propagation Magazine, Vol. 63, 100-110, 2021.
doi:10.1109/MAP.2020.3043460

21. Huang, X., D. Yang, and H. Yang, "Multiple-band reflective polarization converter using U-shaped metamaterial," Journal of Applied Physics, Vol. 115, 103505, 2014.
doi:10.1063/1.4868076

22. Shi, H., J. Li, A. Zhang, J. Wang, and Z. Xu, "Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity," Optics Express, Vol. 22, 20973-20981, 2014.
doi:10.1364/OE.22.020973

23. Loncar, J., A. Grbic, and S. Hrabar, "A reflective polarization converting metasurface at X-band frequencies," IEEE Transactions on Antennas and Propagation, Vol. 66, 3213-3218, 2018.
doi:10.1109/TAP.2018.2816784

24. Lin, B., B. Wang, W. Meng, X. Da, W. Li, Y. Fang, and Z. Zhu, "Dual-band high-efficiency polarization converter using an anisotropic metasurface," Journal of Applied Physics, Vol. 119, 183103, 2016.
doi:10.1063/1.4948957

25. Chen, H., J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, Vol. 115, 154504, 2014.
doi:10.1063/1.4869917

26. Jia, Y., Y. Liu, W. Zhang, and S. Gong, "Ultra-wideband and high-efficiency polarization rotator based on metasurface," Applied Physics Letters, Vol. 109, 051901, 2016.
doi:10.1063/1.4960355

27. Jiang, W., Y. Xue, and S.-X. Gong, "Polarization conversion metasurface for broadband radar cross section reduction," Progress In Electromagnetics Research Letters, Vol. 62, 9-15, 2016.
doi:10.2528/PIERL16060504

28. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 64, 179-188, 2016.
doi:10.1109/TAP.2015.2502981

29. Long, M., W. Jiang, and S. Gong, "Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface," IEEE Antennas Wireless and Propagation Letters, Vol. 16, 2534, 2017.
doi:10.1109/LAWP.2017.2731862

30. Khalaj-Amirhosseini, M. and M. Khanjarian, "Radar cross section reduction using polarization cancellation approach," Progress In Electromagnetics Research Letters, Vol. 74, 107-110, 2018.
doi:10.2528/PIERL18020401

31. Al-Nuaimi, M. K. T., W. Hong, and Y. He, "Design of diffusive modified chessboard metasurface," IEEE Antennas Wireless and Propagation Letters, Vol. 18, 1621-1625, 2019.
doi:10.1109/LAWP.2019.2925378

32. Zhou, Y., X. Cao, J. Gao, H. Yang, and S. Li, "Reconfigurable metasurface for multiple functions: Magnitude, polarization and phase modulation," Optics Express, Vol. 26, 29451-29459, 2018.
doi:10.1364/OE.26.029451

33. Yang, J., Y. Cheng, D. Qi, and R. Gong, "Study of energy scattering relation and RCS reduction characteristic of matrix-type coding metasurface," Applied Sciences-Basel, Vol. 8, 1231, 2018.
doi:10.3390/app8081231

34. Liu, Y., Y. Jia, W. Zhang, and F. Li, "Wideband RCS reduction of a slot array antenna using a hybrid metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, 3644-3652, 2020.
doi:10.1109/TAP.2019.2963575

35. Xu, J., R. Li, S. Wang, and T. Han, "Ultra-broadband linear polarization converter based on anisotropic metasurface," Optics Express, Vol. 26, 26235-26241, 2018.
doi:10.1364/OE.26.026235

36. Hu, C., X. Li, Q. Feng, X. Chen, and X. Luo, "Investigation on the role of the dielectric loss in metamaterial absorber," Optics Express, Vol. 18, 6598-6603, 2010.
doi:10.1364/OE.18.006598

37. Zhang, L., S. Liu, L. Li, and T. Cui, "Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces," ACS Applied Materials & Interfaces, Vol. 9, 36447-36455, 2017.
doi:10.1021/acsami.7b12468

38. Al-Nuaimi, M. K. T., Y. He, and W. Hong, "Design of 1-bit coding engineered reflectors for EM-wave shaping and RCS modifications," IEEE Access, Vol. 6, 75422-75428, 2018.
doi:10.1109/ACCESS.2018.2883721

39. Chen, Z. and M. Segev, "Highlighting photonics: Looking into the next decade," eLight, Vol. 1, No. 2, 2021.