1. Veselago, V. G., "Electrodynamics of substances with simultaneously negative ε and μ," Usp. Fiz. Nauk., Vol. 92, 517, 1967.
doi:10.3367/UFNr.0092.196707d.0517
2. Pendry, J. B. and D. R. Smith, "Reversing light with negative refraction," Physics Today, Vol. 57, 37-43, 2004.
doi:10.1063/1.1784272
3. Ramakrishna, S. A., "Physics of negative refractive index materials," Reports on Progress in Physics, Vol. 68, No. 2, 449, 2005.
doi:10.1088/0034-4885/68/2/R06
4. Krowne, C. M. and Y. Zhang, Physics of Negative Refraction and Negative Index Materials, Springer-Verlag Berlin Heidelberg, 2007.
doi:10.1007/978-3-540-72132-1
5. Rajkumar, R. and U. K. Kommuri, "A triangular complementary split ring resonator based compact metamaterial antenna for multiband operation," Wireless Personal Communications, Vol. 101, No. 2, 1075-1089, 2018.
doi:10.1007/s11277-018-5749-7
6. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "A compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications," AEU - International Journal of Electronics and Communications, Vol. 83, 88-94, 2018.
doi:10.1016/j.aeue.2017.08.030
7. Chaturvedi, D. and S. Raghavan, "A compact metamaterial-inspired antenna for WBAN application," Wireless Personal Communications, Vol. 105, No. 4, 1449-1460, 2019.
doi:10.1007/s11277-019-06153-z
8. Sahoo, R. and D. Vakula, "Compact metamaterial inspired conformal dual-band antenna loaded with meander lines and fractal shaped inductor for Wi-Fi and WiMAX applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 13, 2349-2359, 2019.
doi:10.1049/iet-map.2018.6008
9. Zhao, M., S. Zhu, J. Chen, X. Chen, and A. Zhang, "Broadband metamaterial aperture antenna for coincidence imaging in terahertz band," IEEE Access, Vol. 8, 121311-121318, 2020.
doi:10.1109/ACCESS.2020.3006929
10. Ma, Q., C. B. Shi, T. Y. Chen, M. Q. Qi, Y. B. Li, and T. J. Cui, "Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity," Journal of Optics, Vol. 20, No. 4, 045101, 2018.
doi:10.1088/2040-8986/aaacbf
11. Ren, J., W. Jiang, and S. Gong, "Low RCS and broadband metamaterial-based low-profile antenna using PCM," IET Microwaves, Antennas & Propagation, Vol. 12, No. 11, 1793-1798, 2018.
doi:10.1049/iet-map.2018.0162
12. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
doi:10.1117/1.OE.53.10.107104
13. Barati, H., M. H. Fakheri, and A. Abdolali, "Experimental demonstration of metamaterial-assisted antenna beam deflection through folded transformation optics," Journal of Optics, Vol. 20, No. 8, 085101, 2018.
doi:10.1088/2040-8986/aacdc1
14. Sehrai, D. A., M. Asif, W. A. Shah, J. Khan, I. Ullah, M. Ibrar, S. Jan, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Metasurface-based wideband MIMO antenna for 5G millimeter-wave systems," IEEE Access, 2021.
15. Mark, R., N. Rajak, K. Mandal, and S. Das, "Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application," AEU - International Journal of Electronics and Communications, Vol. 100, 144-152, 2019.
doi:10.1016/j.aeue.2019.01.011
16. Shabbir, T., R. Saleem, S. S. Al-Bawri, M. F. Shafique, and M. T. Islam, "Eight-port metamaterial loaded UWB-MIMO antenna system for 3D system-in-package applications," IEEE Access, Vol. 8, 106982-106992, 2020.
doi:10.1109/ACCESS.2020.3000134
17. Zhu, X., X. Yang, Q. Song, and B. Lui, "Compact UWB-MIMO antenna with metamaterial FSS decoupling structure," EURASIP Journal on Wireless Communications and Networking, Vol. 2017, No. 1, 1-6, 2017.
doi:10.1186/s13638-016-0795-x
18. Desai, A. and T. Upadhyaya, "Transparent dual band antenna with μ-negative material loading for smart devices," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2805-2811, 2018.
doi:10.1002/mop.31474
19. Liu, D., J. Niu, H. Zhu, and J. Zhang, "Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna," Nanotechnology, Vol. 29, No. 6, 06LT01, 2018.
doi:10.1088/1361-6528/aaa25b
20. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandöken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229-235, 2016.
doi:10.1017/S175907871400138X
21. Borazjani, O., M. Naser-Moghadasi, J. Rashed-Mohassel, and R. Sadeghzadeh, "Design and fabrication of a new high gain multilayer negative refractive index metamaterial antenna for X-band applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 9, e22284, 2020.
doi:10.1002/mmce.22284
22. Patel, U. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502
23. Xavier, G. V. R., A. J. R. Serres, E. G. da Costa, A. C. de Oliveira, L. A. M. M. Nobrega, and V. C. de Souza, "Design and application of a metamaterial superstrate on a bio-inspired antenna for partial discharge detection through dielectric windows," Sensors, Vol. 19, No. 19, 4255, 2019.
doi:10.3390/s19194255
24. Ojo, R., M. F. Jamlos, P. J. Soh, M. A. Jamlos, N. Bahari, Y. S. Lee, S. S. Al-Bawri, M. S. Abdul Karim, and K. A. Khairi, "A triangular MIMO array antenna with a double negative metamaterial superstrate to enhance bandwidth and gain," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 8, e22320, 2020.
doi:10.1002/mmce.22320
25. Cheng, C., W. Chen, Y. Lu, F. Ruan, and G. Li, "Large near-field enhancement in terahertz antennas by using hyperbolic Metamaterials with hole arrays," Applied Sciences, Vol. 9, No. 12, 2524, 2019.
doi:10.3390/app9122524
26. Tang, M. C., Y. Chen, T. Shi, and R. W. Ziolkowski, "Bandwidth-enhanced, compact, near-field resonant parasitic filtennas with sharp out-of-band suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1483-1487, 2018.
doi:10.1109/LAWP.2018.2850325
27. Wan, J., O. Rybin, and S. Shulga, "Far field focusing for a microwave patch antenna with composite substrate," Results in Physics, Vol. 8, 971-976, 2018.
doi:10.1016/j.rinp.2018.01.038
28. Baghel, A. K., S. S. Kulkarni, and S. K. Nayak, "Far-field wireless power transfer using GRIN lens metamaterial at GHz frequency," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 6, 424-426, 2019.
doi:10.1109/LMWC.2019.2912056
29. Lum, K. M., C. Laohapensaeng, and C. Free, "A novel traveling-wave feed technique for circularly polarized planar antennas," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, 180-182, 2005.
doi:10.1109/LMWC.2005.844218
30. Dorsey, W. M. and A. I. Zaghloul, "Dual-band, dual-circularly polarised antenna element," IET Microwaves, Antennas & Propagation, Vol. 7, No. 4, 283-290, 2013.
doi:10.1049/iet-map.2012.0625
31. Liu, D. and B. Gaucher, "A new multiband antenna for WLAN/cellular applications," IEEE 60th Vehicular Technology Conference, 2004, VTC2004-Fall, Vol. 1, 243-246, IEEE, September 2004.
32. Long, J. and D. F. Sievenpiper, "A compact broadband dual-polarized patch antenna for satellite communication/navigation applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 273-276, 2014.