1. Andrews, J. G., S. Buzzi, W. Choi, et al. "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, 2014.
doi:10.1109/JSAC.2014.2328098
2. Naqvi, A. H. and S. Lim, "Review of recent phased arrays for millimeter-wave wireless communication," Sensors, Vol. 18, No. 10, 3194, 2018.
doi:10.3390/s18103194
3. Federal Communications Commission (FCC), FCC Establishes Procedures for First 5G Spectrum Auctions, Aug. 2018.
4. Yang, B., Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, "Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications," IEEE Trans. Microw. Theory Tech., 1-16, 2018.
5. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813
6. Dehos, C., J. González, A. Domenico, D. Kténas, and L. Dussopt, "Millimeter-wave access and backhauling: The solution to the exponential data traffic increase in 5G mobile communications systems?," IEEE Commun. Mag., Vol. 52, 88-95, 2014.
doi:10.1109/MCOM.2014.6894457
7. Jamaluddin, M. H., M. Kamarudin, and M. Khalily, "Rectangular dielectric resonator antenna array for 28 GHz applications," Progress in Electromagnetics Research, Vol. 63, 53-61, 2016.
8. Yashchyshyn, Y., K. Derzakowski, O. Bogdan, et al. "28 GHz switched-beam antenna based on S-PIN diodes for 5G mobile communications," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 2, 225-228, 2018.
doi:10.1109/LAWP.2017.2781262
9. Bang, J., J. Choi., et al. "A SAR reduced MM-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5g cellular handsets," IEEE Antennas Wirel. Propag. Lett., 2018.
doi:10.1109/LAWP.2017.2781262
10. Li, W. T., M. Wei, B. Badamchi, H. Subbaraman, and X. Shi, "A novel tri-band reconfigurable microstrip patch antenna," Frequenz, Vol. 74, No. 7-8, 247-253, 2020.
doi:10.1515/freq-2019-0130
11. Yu, B., K. Yang, C.-Y.-D. Sim, et al. "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 462-466, 2018.
doi:10.1109/TAP.2017.2772084
12. Sodré, Jr., A. C., I. F. da Costa, R. A. dos Santos, H. R. D. Filgueiras, and D. H. Spadoti, "Waveguide-based antenna arrays for 5G networks," International Journal of Antennas and Propagation, Vol. 2018, Article ID 5472045, 10 pages, 2018.
13. Ullah, H. and F. A. Tahir, "A broadband wire hexagon antenna array for future 5G communications in 28 GHz band," Microw. Opt. Technol. Lett., 1-6, 2018.
14. Mao, C., M. Khalily, P. Xiao, T. W. C. Brown, and S. Gao, "Planar sub-millimeter-wave array antenna with enhanced gain and reduced sidelobes for 5G broadcast applications," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 160-168, Jan. 2019.
doi:10.1109/TAP.2018.2874796
15. Jilani, S. F., A. Alomainy, et al. "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microw. Antennas Propag., Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467
16. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wirel. Commun., Vol. 24, 106-112, 2017.
doi:10.1109/MWC.2016.1400374RP
17. Hong, W., K.-H. Baek, Y. Lee, et al. "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Commun. Mag., Vol. 52, No. 9, 63-69, 2014.
doi:10.1109/MCOM.2014.6894454
18. Roh, W., J. Y. Seol, J. H. Park, et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750
19. Naqvi, S. A. and M. S. Khan, "Design of a miniaturized frequency reconfigurable antenna for rectenna in WiMAX and ISM frequency bands," Microw. Opt. Technol. Lett., Vol. 60, 325-330, 2018.
doi:10.1002/mop.30962
20. Awan, W. A., A. Zaidi, N. Hussain, A. Iqbal, and A. Baghdad, "Stub loaded, low profile UWB antenna with independently controllable notch-bands," Microw. Opt. Technol. Lett., 1-8, 2019.
21. Naqvi, S. A., "Miniaturized triple band and ultra-wideband (UWB) fractal antennas for UWB applications," Microw. Opt. Technol. Lett., Vol. 59, 1542-1546, 2017.
doi:10.1002/mop.30582
22. "Rogers Corporation,", www.rogerscorp.com, accessed Feburary 2021.
23. Balanis, C. A., Antenna Theory-Analysis and Design, Wiley, 1997.
24. Ansys HFSS, ver. 2016.2, Ansys Corporation, Pittsburgh, PA, 2017.
25. "MACOM,", www.macom.com, accessed Feburary 2021.
26. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2183-2186, 2017.
doi:10.1109/LAWP.2017.2703850
27. Hussain, N., et al. "Compact wideband patch antenna and its MIMO configuration for 28 GHz applications," AEU-International Journal of Electronics and Communications, Vol. 132, e153612, 2021.
doi:10.1016/j.aeue.2021.153612