Vol. 109
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-05
High Power Density Spatial Combiner for the q -Band, Ready for Space Applications
By
Progress In Electromagnetics Research M, Vol. 109, 163-177, 2022
Abstract
This paper outlines the design characterization and the electromagnetic performance of a millimeter-wave high power combining structure, which exploits the spatial power combination technique. The input matching is always below 10 dB over the entire Q band, and the overall weight of the structure is about 500 g. Multiphysics simulations show how this structure is suitable for the most challenging space missions that will arise in next few years. In fact, 100 W of RF power above the frequency of 40 GHz can be delivered while all the specifications for satellite payloads are complied. Other Spatial Power Combiner structures, such as Radial ones, cannot be implemented in space missions since they are much less compact and much heavier than the one presented in this article, and this is the major advantage of this configuration which was specially designed for a space project.
Citation
Stefano Fantauzzi, Lorenzo Valletti, and Franco Di Paolo, "High Power Density Spatial Combiner for the q -Band, Ready for Space Applications," Progress In Electromagnetics Research M, Vol. 109, 163-177, 2022.
doi:10.2528/PIERM21120903
References

1. Passi, D., A. Leggieri, F. Di Paolo, A. Tafuto, and M. Bartocci, "Spatial power combiner technology," PIERS Proceedings, 932-938, Prague, Czech Republic, July 6-9, 2015.

2. Passi, D., A. Leggieri, A. Mattioni, F. Di Paolo, M. D'Antoni, M. Bartocci, E. Ciacia, and A. Tafuto, "Small size, high power density, solid state amplifiers for space application," 2018 International Symposium on Networks, Computers and Communications (ISNCC), 1-5, 2018, doi: 10.1109/ISNCC.2018.8531030.

3. Yin, K., K. Zhang, and J. Xu, "Characterization and design of millimeter-wave full-band waveguide-based spatial power divider/combiner," Progress In Electromagnetics Research C, Vol. 50, 65-74, 2014.

4. Kang, Z.-Y., Q.-X. Chu, and Q. S. Wu, "A compact Ka-band broadband waveguide-based traveling-wave spatial power combiner with low loss symmetric coupling structure," Progress In Electromagnetics Research Letters, Vol. 36, 181-190, 2013.

5. Passi, D., et al. "Innovative transition for wideband spatial combiners," 2018 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMIC), 1-3, 2018, doi: 10.1109/INMMIC.2018.8430013.

6. Leggieri, A., D. Passi, G. Saggio, and F. Di Paolo, "Multiphysics design of a spatial combiner predisposed for thermo-mechanically affected operation," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 17, 2153-2168, 2014.

7. Leggieri, A., D. Passi, G. Saggio, and F. di Paolo, "Global design of a waveguide X-band power amplifier," Int. J. Simul. Syst. Sci. Technol., Vol. 15, No. 4, 2014, doi: 10.5013/IJSSST.a.15.04.09.

8. Passi, D., A. Leggieri, F. Di Paolo, M. Bartocci, and A. Tafuto, "Design of high power density amplifiers: Application to Ka band," J. Infrared, Millimeter, Terahertz Waves, Vol. 38, No. 10, 1252-1263, 2017, doi: 10.1007/s10762-017-0402-1.

9. Leggieri, A., D. Passi, and F. Di Paolo, "The squarax amplifier: An electromagnetic and thermo-mechanical innovation," Progress In Electromagnetics Research Symposium Proceedings, 2273-2280, Guangzhou, China, August 25-28, 2014.

10. Leggieri, A., G. Orengo, D. Passi, and F. Di Paolo, "The squarax spatial power combiner," Progress In Electromagnetics Research C, Vol. 45, 43-55, 2013.

11. Passi, D., A. Leggieri, F. Di Paolo, M. Bartocci, A. Tafuto, and A. Manna, "High efficiency Ka-band spatial combiner," Adv. Electromagn., Vol. 3, No. 2, 2014, doi: 10.7716/aem.v3i2.267.

12. Leggieri, A., D. Passi, F. Di Paolo, M. Bartocci, A. Tafuto, and A. Manna, "A novel Ka-band spatial combiner amplifier: Global design and modeling," PIERS Proceedings, 840-845, Prague, Czech Republic, July 6-9, 2015.

13. Valletti, L., S. Fantauzzi, M. Bartocci, P. Bia, A. Manna, P. Livreri, F. Di Paolo, and E. Limiti, "Vircator technologies comparison and novel anode analysis," 2021 PhotonIcs & Electromagnetics Research Symposium (PIERS), 2781-2789, Hangzhou, China, November 22, 2021.

14. Passi, D., A. Leggieri, R. Citroni, and F. Di Paolo, "Broadband TE10 to TE20 mode transformer for X band," Adv. Electromagn., Vol. 5, No. 3, 2016, doi: 10.7716/aem.v5i3.419.

15. Passi, D., A. Leggieri, R. Citroni, and F. Di Paolo, "New six-way waveguide to microstrip transition applied in X band spatial power combiner," Adv. Electromagn., Vol. 6, No. 4, 2017, doi: 10.7716/aem.v6i4.421.

16. Yin, K., J. P. Xu, and Z. H. Chen, "A full Ka-band waveguide-based spatial power-combining amplifier using E-plane anti-phase probes,", State Key Lab. of Millimeter-waves, Southeast University, Nanjing, Jiangsu, 2014.

17. Zhou, Y.-H., J.-Y. Li, B. Zhao, and H.-Y. Wang, "A Ka-band power amplifier based on double-probe microstrip to waveguide transition," PIERS Proceedings, 1521-1525, Xi'an, China, March 22-26, 2010.

18. Fantauzzi, S., L. Valletti, and F. Di Paolo, "Virtual prototype of innovative Ka-band power amplifier based on waveguide polarizer," Adv. Electromagn., Vol. 9, No. 2, 60-65, 2020, doi: 10.7716/aem.v9i2.1497.

19. Khan, P., L. Epp, and A. Silva, "A Ka-band wide-bandgap solid-state power amplifier: Architecture performance estimates," The Interplanetary Network Progress Report, Vol. 42-163, 1-17, November 2005.

20. Lee, S. H., D. H. Lee, and J. H. Chang, "X-band 1 kW SSPA using 20-way hybrid radial combiner for accelerator," 2016 Asia-Pacific Microwave Conference (APMC), 1-4, 2016, doi: 10.1109/APMC.2016.7931274.

21. Kazemi, R., G. Hegazi, and A. E. Fathy, "X-band all-waveguide radial combiner for high power applications," 2015 IEEE MTT-S International Microwave Symposium, 1-4, 2015, doi: 10.1109/MWSYM.2015.7166748.

22. Denoual, J. M., A. Peden, B. Della, and J.-P. Fraysse, "16-way radial divider/combiner for solid state power amplifiers in the K band," 2008 38th European Microwave Conference, 345-348, 2008, doi: 10.1109/EUMC.2008.4751459.

23. Zhai, G. and B. Shi, "Compact low loss millimeter wave 8-way radial waveguide power combiner," TENCON 2017 - 2017 IEEE Region 10 Conference, 1598-1601, 2017, doi: 10.1109/TENCON.2017.8228112.

24. Sarhan, A. A., N. Ghadimi, E. Hamidi, and H. Oraizi, "Broadband radial waveguide power combiner with improved isolation among adjacent output ports," Progress In Electromagnetics Research C, Vol. 51, 63-70, 2014.

25. Bhat, B. and S. K. Koul, Analysis, Design and Applications of Fin Lines, Artech House, 1987.

26. https://www.ansys.com/products/electronics/ansys-hfss.

27. https://www.ansys.com/products/structures/ansys-mechanical.

28. Di Paolo, F., Networks and Devices Using Planar Transmission Lines, CRC Press, 2000.

29. Xu, J., Y. Cui, C. Qian, and W. Li, "A Ka-band power-combined amplifier based on a six-way quasi-planar power divider/combiner," 2015 Asia-Pacific Microwave Conference (APMC), 1-3, 2015, doi: 10.1109/APMC.2015.7411821.

30. An, D., X. Li, J. Mou, and X. Lv, "A new type of Ka-band waveguide-based power-combining structures," 2008 International Conference on Microwave and Millimeter Wave Technology, 347-350, 2008, doi: 10.1109/ICMMT.2008.4540383.

31. Yin, K., "Millimeter wave power-combined amplifier using traveling-wave power divider-combiner," 2015 Asia-Pacific Microwave Conference (APMC), 1-3, 2015, doi: 10.1109/APMC.2015.7413379.

32. Xu, J., Z. Xu, J. Guo, H. C. Zhang, C. Qian, and D. Zhao, "Design of a Q-band six-way spatial power combining structure," 2018 IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2018, doi: 10.1109/IEEE-IWS.2018.8400955.