Vol. 108
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-02-19
Simultaneous Measurement of Curvature and Temperature Based on a Simple Cascaded Fiber Interferometer
By
Progress In Electromagnetics Research M, Vol. 108, 151-161, 2022
Abstract
An optical fiber sensor based on thin-core fiber (TCF) and no-core fiber (NCF) interference structures is presented and experimentally demonstrated to measure the curvature and temperature. The fabrication process of the sensor is simple and convenient, and the sensing part is formed by cascading a TCF and an NCF between two single-mode fibers. The dips at resonant wavelengths are generated in the optical transmission spectrum owing to mode interference. The experimental results indicate that an optical curvature sensitivity of -5.76 nm/m-1 is achieved in the linear range of 0.9895-3.2817 m-1, and that a temperature sensitivity of 0.18 nm/˚C is obtained in the temperature range of 25-55˚C. Additionally, the cross-sensitivity problem is solved using the coefficient matrix measurement method, and the cross-sensitivity is as low as 0.0312 m-1/˚C. Therefore, the sensor exhibits a highly reproducible technique and low cross sensitivity, which has a wide range of application prospects in the accurate measurement of mechanical arms and structural health monitoring.
Citation
Fang Wang, Yinghui Lu, and Yufang Liu, "Simultaneous Measurement of Curvature and Temperature Based on a Simple Cascaded Fiber Interferometer," Progress In Electromagnetics Research M, Vol. 108, 151-161, 2022.
doi:10.2528/PIERM21120701
References

1. Jang, M., J. S. Kim, S. H. Um, S. Yang, and J. Kim, "Ultra-high curvature sensors for multi-bend structures using fiber Bragg gratings," Opt. Express, Vol. 27, No. 3, 2074-2084, Feb. 2019.
doi:10.1364/OE.27.002074

2. Yang, W., C. Li, M. Wang, X. Yu, J. Fan, Y. Xiong, Y. Yang, and L. Li, "The polydimethylsiloxane coated fiber optic for all fiber temperature sensing based on the multi-thin-multi fiber structure," IEEE Sens. J., Vol. 21, No. 1, 51-56, Jan. 2020.
doi:10.1109/JSEN.2020.2972292

3. Abbas, L. G., A. Zhou, F. Mumtaz, A. Muhammad, Y. Dai, and R. Parveen, "Temperature and strain sensing with hybrid interferometer," IEEE Sens. J., Vol. 21, No. 23, 26785-26792, Dec. 2021.
doi:10.1109/JSEN.2021.3120798

4. Hou, Y., J. Wang, X. Wang, Y. Liao, L. Yang, E. Cai, and S. Wang, "Simultaneous measurement of pressure and temperature in seawater with PDMS sealed microfiber Mach-Zehnder interferometer," J. Lightwave Technol., Vol. 38, No. 22, 6412-6421, Nov. 2020.
doi:10.1109/JLT.2020.3012716

5. Azmi, A., A. Abdullah, M. Noor, M. Ibrahim, R. Ibrahim, T. Tan, and J. Zhang, "Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber," Opt. Laser Technol., Vol. 135, 106716, Mar. 2021.
doi:10.1016/j.optlastec.2020.106716

6. Zhang, X., B. Liu, H. Zhang, J. Wu, B. Song, and C. Wang, "A magnetic field sensor based on a dual S-tapered multimode fiber interferometer," Meas. Sci. Technol., Vol. 29, No. 7, 075103, Jul. 2018.
doi:10.1088/1361-6501/aac00e

7. Wang, F., K. Pang, T. Ma, X. Wang, and Y. Liu, "High-sensitivity and temperature-insensitive refractometer based on TNHF structure for low-range refractive index measurement," Progress In Electromagnetics Research, Vol. 166, 167-175, 2019.
doi:10.2528/PIER19102301

8. Chen, W., Z. Chen, Y. Zhang, and H. Li, "Fiber sensor for relative humidity measurement at water absorption band of 2 μm," Meas. Sci. Technol., Vol. 31, No. 3, 035101, Dec. 2019.
doi:10.1088/1361-6501/ab55f3

9. Wang, F., L. Zhang, X. Wang, T. Ma, K. Yu, and Y. Liu, "A high-sensitivity sensor based on tapered dispersion compensation fiber for curvature and temperature measurement," Opt. Commun., Vol. 481, 126534, Oct. 2020.

10. Zhao, Y., C. Cai, and X. Li, "Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMFMMF-SMF structure," IEEE T. Instrum. Meas., Vol. 66, No. 1, 141-147, Jan. 2017.
doi:10.1109/TIM.2016.2615479

11. Zhou, Y., Y. Wang, H. Liu, J. Chen, P. Yang, L. she, F. Chen, J. Shao, Z. Guan, and Z. Zhang, "High-sensitive bending sensor based on a seven-core fiber," Opt. Commun., Vol. 483, 126617, Mar. 2021.
doi:10.1016/j.optcom.2020.126617

12. Dong, S., B. Dong, C. Yu, and Y. Guo, "High sensitivity optical fiber curvature sensor based on cascaded fiber interferometer," J. Lightwave Technol., Vol. 36, No. 4, 1125-1130, Feb. 2018.
doi:10.1109/JLT.2017.2771507

13. Zhu, F., Y. Zhang, Y. Qu, W. Jiang, H. Su, Y. Guo, and K. Qi, "Stress-insensitive vector curvature sensor based on a single fiber Bragg grating," Opt. Fiber. Technol., Vol. 54, No. 102133, Jan. 2020.

14. Fu, X., J. Wen, Y. Zhang, D. Wang, F. Liu, H. Xie, G. Fu, and W. Bi, "Experimental and theoretical analysis of curvature sensor based on cladding mode resonance with triple cladding quartz specialty fiber," Opt. Commun., Vol. 429, 5-11, Dec. 2018.
doi:10.1016/j.optcom.2018.07.077

15. Zhang, S., Y. Liu, H. Guo, A. Zhou, and L. Yuan, "Highly sensitive vector curvature sensor based on two juxtaposed fiber Michelson interferometers with Vernier-like effect," IEEE Sens. J., Vol. 19, No. 6, 2148-2154, Mar. 2019.
doi:10.1109/JSEN.2018.2884889

16. Zhao, Y., A. Zhou, H. Guo, Z. Zheng, Y. Xu, C. Zhou, and L. Yuan, "An integrated fiber michelson interferometer based on twin-core and side-hole fibers for multiparameter sensing," J. Lightwave Technol., Vol. 36, No. 4, 993-997, Feb. 2018.
doi:10.1109/JLT.2017.2753256

17. Ruan, J., "Fiber curvature sensor based on concave-heterotypic cascaded fiber Sagnac interferometer," Microw. Opt. Techn. Let., Vol. 62, No. 11, 3645-3649, Nov. 2020.
doi:10.1002/mop.32481

18. Wang, S., W. Zhang, L. Chen, Y. Zhang, P. Geng, Y. Zhang, T. Yan, L. Yu, W. Hu, and Y. Li, "Two-dimensional micro bend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber," Opt. Lett., Vol. 42, No. 23, 4938-4941, Dec. 2017.
doi:10.1364/OL.42.004938

19. Oliveira, R., J. Osorio, S. Aristilde, L. Bilro, R. Nogueira, and C. Cordeiro, "Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings," Meas. Sci. Technol., Vol. 27, No. 7, 075107, Jul. 2016.
doi:10.1088/0957-0233/27/7/075107

20. Zhou, Y., W. Zhou, C. Chan, W. Wong, L. Shao, J. Cheng, and X. Dong, "Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating," Opt. Commun., Vol. 284, No. 24, 5669-5672, Dec. 2011.
doi:10.1016/j.optcom.2011.08.048

21. Wo, J., Q. Sun, X. Li, D. Liu, and P. Shum, "Biconical-taper-assisted fiber interferometer with modes coupling enhancement for high-sensitive curvature measurement," Appl. Phys. B - Lasers O., Vol. 115, No. 1, 1-8, Apr. 2014.
doi:10.1007/s00340-013-5565-4

22. Sun, X., H. Du, X. Dong, Y. Hu, and J. Duan, "Simultaneous curvature and temperature sensing based on a novel Mach-Zehnder interferometer," Photonic Sens., Vol. 10, No. 2, 171-180, Jun. 2020.
doi:10.1007/s13320-019-0551-z

23. Gutiérrez Gutiérreza, J., J. Sierra-Hernandez, M, Vargas-Trevino, E. Lopez-Apreza, C. Romero-Salazar, O. Hernandez-Flores, J. Estudillo-Ayala, and R. Rojas-Laguna, "A curvature sensing setup based on an asymmetric concatenated tapered Mach-Zehnder interferometer," Opt. Laser Technol., Vol. 132, 106490, Dec. 2020.
doi:10.1016/j.optlastec.2020.106490

24. Chen, E., B. Dong, Y. Li, X. Wang, Y. Zhao, W. Xu, W. Zhao, and Y. Wang, "Cascaded few-mode fiber down-taper modal interferometers and their application in curvature sensing," Opt. Commun., Vol. 475, 126274, Nov. 2020.

25. Cheng, H., S. Wu, Q. Wang, S. Wang, and P. Lu, "In-line hybrid fiber sensor for curvature and temperature measurement," IEEE Photon. J., Vol. 11, No. 6, 6803311, Dec. 2019.
doi:10.1109/JPHOT.2019.2944988

26. Zhao, Y., L. Cai, and X. Li, "High sensitive modal interferometer for temperature and refractive index measurement," IEEE Photonic Tech. L., Vol. 27, No. 12, 1341-1344, Jun. 2015.
doi:10.1109/LPT.2015.2421349

27. Yu, F., P. Xue, and J. Zheng, "Enhancement of refractive index sensitivity by bending a core-offset in-line fiber Mach-Zehnder interferometer," IEEE Sens J., Vol. 19, No. 9, 3328-3334, May 2019.
doi:10.1109/JSEN.2019.2892718

28. Zhao, Y., M. Chen, F. Xia, L. Cai, and X. Li, "Small curvature sensor based on butterfly shaped Mach-Zehnder interferometer," IEEE T. Electron. Dev., Vol. 64, No. 11, 4644-4649, Nov. 2017.
doi:10.1109/TED.2017.2746087

29. Zhang, Y., W. Zhang, Y. Zhang, S. Wang, L. Yu, and Y. Yan, "Simultaneous measurement of curvature and temperature based on LP11 mode Bragg grating in seven-core fiber," Meas. Sci. Technol., Vol. 28, No. 5, 055101, May 2017.
doi:10.1088/1361-6501/aa609f

30. Wang, Q. and Y. Liu, "Review of optical fiber bending/curvature sensor," Measurement, Vol. 130, 161-176, Dec. 2018.
doi:10.1016/j.measurement.2018.07.068

31. Zheng, Y., X. Yang, W. Feng, and W. Fan, "Optical fiber refractive index sensor based on SMF-TCF-NCF-SMF interference structure," Optik, Vol. 226, 169500, Jan. 2021.

32. Lu, H., X. Wang, S. Zhang, F. Wang, and F. Liu, "A fiber-optic sensor based on no-core fiber and Faraday rotator mirror structure," Opt. Laser Technol., Vol. 101, 507-514, May 2018.
doi:10.1016/j.optlastec.2017.11.014

33. Raji, Y. M., H. S. Lin, S. A. Ibrahim, M. R. Mokhtar, and Z. Yusoff, "Intensity-modulated abrupt tapered Fiber Mach-Zehnder Interferometer for the simultaneous sensing of temperature and curvature," Opt. Laser Technol., Vol. 86, 8-13, Dec. 2016.
doi:10.1016/j.optlastec.2016.06.006