Vol. 102
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-01-28
Low Losses and Compact Size Microstrip Diplexer Based on Open-Loop Resonators with New Zigzag Junction for 5G Sub-6-GHz and Wi-Fi Communications
By
Progress In Electromagnetics Research Letters, Vol. 102, 109-117, 2022
Abstract
In this paper, a high-performance microstrip diplexer is designed and manufactured. The design is based on two pairs rectangular open-loop resonators band-pass filters and a novel zigzag junction. It operates at 3.5 GHz for fifth-generation 5G sub-6-GHz and 5 GHz for Wi-Fi communications. The proposed diplexer is considerably miniaturized with a global compact size of 30×17 mm2. In addition, it presents low insertion losses less than 0.5 dB at both channels in comparison with the previous diplexers. Moreover, the isolation is higher than 20 dB, and the return loss is better than 14 dB at the bandwidths. To confirm the simulation results, the presented diplexer is manufactured and measured where a good agreement is carried out.
Citation
Souhaila Ben Haddi, Asmaa Zugari, and Alia Zakriti, "Low Losses and Compact Size Microstrip Diplexer Based on Open-Loop Resonators with New Zigzag Junction for 5G Sub-6-GHz and Wi-Fi Communications," Progress In Electromagnetics Research Letters, Vol. 102, 109-117, 2022.
doi:10.2528/PIERL21120305
References

1. Ezhilarasan, E. and M. Dinakaran, "A review on mobile technologies: 3G, 4G and 5G," 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM), 369-373, 2017.

2. Yu, H., H. Lee, and H. Jeon, "What is 5G? Emerging 5G mobile services and network requirements," Sustainability, Vol. 9, No. 10, 1848, 2017.
doi:10.3390/su9101848

3. Kim, D., "A 2020 perspective on 'A dynamic model for the evolution of the next generation Internet-Implications for network policies': Towards a balanced perspective on the Internet's role in the 5G and Industry 4.0 era," Electron. Commer. Res. Appl., Vol. 41, 100966, 2020.
doi:10.1016/j.elerap.2020.100966

4. Magsi, H., A. H. Sodhro, F. A. Chachar, S. A. K. Abro, G. H. Sodhro, and S. Pirbhulal, "Evolution of 5G in Internet of medical things," 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 1-7, 2018.

5. Rao, S. K. and R. Prasad, "Impact of 5G technologies on industry 4.0," Wirel. Pers. Commun., Vol. 100, No. 1, 145-159, 2018.
doi:10.1007/s11277-018-5615-7

6. Fady, B., J. Terhzaz, A. Tribak, F. Riouch, and A Mediavilla Sanchez, "Novel miniaturized planar low-cost multiband antenna for industry 4.0 communications," Progress In Electromagnetics Research C, Vol. 93, 29-38, 2019.
doi:10.2528/PIERC19030809

7. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "Design of a band-stop planar filter for telecommunications applications," Procedia Manuf., Vol. 46, 788-792, 2020.
doi:10.1016/j.promfg.2020.04.006

8. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "A compact microstrip t-shaped resonator band pass filter for 5G applications," 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), 1-5, 2020.

9. Achraou, S., H. Elftouh, A. Farkhsi, A. Zakriti, and S. Ben Haddi, "Substrate integrated waveguide bandpass filter for mm-Wave applications," Procedia Manuf., Vol. 46, 766-770, 2020.
doi:10.1016/j.promfg.2020.04.002

10. Jamshidi, M., A. Lalbakhsh, S. Lotfi, H. Siahkamari, B. Mohamadzade, and J. Jalilian, "A neuro-based approach to designing a Wilkinson power divider," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 3, e22091, 2020.

11. Rezaei, A., L. Noori, and M. H. Jamaluddin, "Novel microstrip lowpass-bandpass diplexer with low loss and compact size for wireless applications," AEU --- International J. Electron. Commun., Vol. 101, 152-159, 2019.
doi:10.1016/j.aeue.2019.02.005

12. Upadhyaya, T., J. Pabari, V. Sheel, A. Desai, R. Patel, and S. Jitarwal, "Compact and high isolation microstrip diplexer for future radio science planetary applications," AEU --- International J. Electron. Commun., Vol. 127, 153497, 2020.
doi:10.1016/j.aeue.2020.153497

13. Ghosh, P., "Microwave and satellite communications," TEMS J. Technology Eng. Maths Sci., Vol. 3, No. 2, 90-91, 2021.

14. Saleh, S., W. Ismail, and I. S. Z. Abidin, "5G Hairpin and interdigital bandpass filters," Int. J. Integr. Eng., Vol. 12, No. 6, 71-79, 2020.
doi:10.30880/ijie.2020.12.06.009

15. Al-Yasir, Y., R. A. Abd-Alhameed, J. M. Noras, A. M. Abdulkhaleq, and N. O. Parchin, "Design of very compact combline band-pass filter for 5G applications," The Loughborough Antennas & Propagation Conference (LAPC 2018), 1-4, 2018.

16. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.

17. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "5G narrow-band band-pass filter using parallel coupled lines and L-shaped resonator," 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 1-4, 2020.

18. Saieed, A., W. Pao, and H. M. Ali, "Prediction of phase separation in a T-Junction," Exp. Therm. Fluid Sci., Vol. 97, 160-179, 2018.
doi:10.1016/j.expthermflusci.2018.04.019

19. Chinig, A., et al., "A new microstrip diplexer using coupled stepped impedance resonators," Int. J. Electr. Comput. Energ. Electron. Commun. Eng., Vol. 9, No. 1, 41-44, 2015.

20. Yousif, A. B. and S. E. Ahmed, "A dual-band coupled line based microstrip diplexer for wireless applications," J. Glob. Sci. Res., Vol. 10, 845-853, 2020.

21. Salehi, M. R., S. Keyvan, E. Abiri, and L. Noori, "Compact microstrip diplexer using new design of triangular open loop resonator for 4G wireless communication systems," AEU --- International J. Electron. Commun., Vol. 70, No. 7, 961-969, 2016.
doi:10.1016/j.aeue.2016.04.015

22. Chinig, A., et al., "A new microstrip diplexer using open-loop resonators," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 13, No. 2, 185-196, 2014.
doi:10.1590/S2179-10742014000200007

23. Rezaei, A., S. I. Yahya, L. Nouri, and M. H. Jamaluddin, "Design of a low-loss microstrip diplexer with a compact size based on coupled meandrous open-loop resonators," Analog Integr. Circuits Signal Process., Vol. 102, No. 3, 579-584, 2020.
doi:10.1007/s10470-020-01625-w

24. Nwajana, A. O. and K. S. K. Yeo, "Microwave diplexer purely based on direct synchronous and asynchronous coupling," Radioengineering, Vol. 25, No. 2, 247-252, 2016.
doi:10.13164/re.2016.0247

25. Chinig, A., A. Errkik, L. El Abdellaoui, A. Tajmouati, J. Zbitou, and M. Latrach, "Design of a microstrip diplexer and triplexer using open loop resonators," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 15, 65-80, 2016.
doi:10.1590/2179-10742016v15i2602