Vol. 102
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-01-17
Compact and Broadband Uniplanar Microstrip Antenna for Endfire Radiation
By
Progress In Electromagnetics Research Letters, Vol. 102, 77-85, 2022
Abstract
A compact and broadband uniplanar Microstrip Antenna (MSA) is proposed for endfire radiation at sub-6 GHz 5G frequency band. The proposed antenna consists of a semi-elliptical radiating element and a U-shaped ground plane. The use of semi-elliptical radiating element results in a wide impedance bandwidth (BW) and compact size. The U-shaped ground plane further improves the bandwidth due to the increased coupling from radiating element to ground. An endfire radiation pattern, 3.8 dBi peak gain, and 49.8% bandwidth (BW) are achieved while a compact size of 0.47λ0×0.13λ0×0.008λ0 (where λ0 is the wavelength in free space at the center frequency) is kept. A parametric study based on CST-MWS simulations is also presented together with an equivalent circuit analysis to see the effects of various dimensional parameters of the uniplanar MSA with an elliptical radiating element. To validate the simulation results, prototype of the proposed antenna was fabricated and tested. The measured results are in good agreement with the simulated ones.
Citation
Rajbala Solanki, "Compact and Broadband Uniplanar Microstrip Antenna for Endfire Radiation," Progress In Electromagnetics Research Letters, Vol. 102, 77-85, 2022.
doi:10.2528/PIERL21120202
References

1. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

2. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, N. Laeveren, and P. Van Roy, "Metallized foams for fractal-shaped microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 6, 20-38, Dec. 2008.
doi:10.1109/MAP.2008.4772718

3. Anguera, J., A. Andujar, S. Benavente, J. Jayasinghe, and S. Kahng, "High-directivity microstrip antenna with mandelbrot fractal boundary," IET Microwaves, Antennas & Propagation, Vol. 12, No. 4, 569-575, Mar. 28, 2018.
doi:10.1049/iet-map.2017.0649

4. Anguera, J., A. Andujar, and J. Jayasinghe, "High directivity microstrip patch antennas perturbing TModd-0 modes," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 1, 39-43, 2020.
doi:10.1109/LAWP.2019.2952260

5. Lu, W.-J., Y.-M. Bo, and H.-B. Zhu, "Novel planar dual-band balanced antipodal slot-dipole composite antenna with reduced ground plane effect," Int. J. RF and Microwave Comp. Aid. Eng., Vol. 22, 319-328, 2012.
doi:10.1002/mmce.20600

6. Xu, J., W.-J. Lu, X.-T. Wu, Y.-M. Bo, L. Zhu, and H.-B. Zhu, "Novel offset-fed dual-band aperture-dipole composite antenna: Operating principle and design approach," Int. J. RF and Microwave Comp. Aid. Eng., Vol. 25, 382-393, 2015.
doi:10.1002/mmce.20872

7. Alhalabi, R. A. and G. M. Rebeiz, "High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3672-3676, Nov. 2009.
doi:10.1109/TAP.2009.2026666

8. Liu, J. and Q. Xue, "Microstrip magnetic dipole Yagi array antenna with endfire radiation and vertical polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1140-1147, Mar. 2013.
doi:10.1109/TAP.2012.2230239

9. Kramer, O., T. Djera , and K. Wu, "Vertically multilayer-stacked Yagi antenna with single and dual polarizations," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1022-1030, Apr. 2010.
doi:10.1109/TAP.2010.2041155

10. Hachi, A., H. Lebbar, and M. Himdi, "3D printed large bandwidth new Yagi-Uda antenna," Progress In Electromagnetics Research Letters, Vol. 88, 129-135, 2020.
doi:10.2528/PIERL19101303

11. Qian, Y., W. R. Deal, N. Kaneda, and T. Itoh, "Microstrip-fed Quasi-Yagi antenna with broadband characteristics," Electron. Lett., Vol. 34, No. 23, 2194-2196, Nov. 1998.
doi:10.1049/el:19981583

12. Kaneda, N., W. R. Deal, Y. Qian, R. Waterhouse, and T. Itoh, "A broadband planar Quasi-Yagi antenna," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1158-1160, Aug. 2002.
doi:10.1109/TAP.2002.801299

13. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Simplified feed for modified printed Yagi antenna," Electron. Lett., Vol. 40, No. 8, 464-466, Apr. 2004.
doi:10.1049/el:20040348

14. Shiroma, G. S. and W. A. Shiroma, "A two-element L-band Quasi-Yagi antenna array with omnidirectional coverage," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3713-3716, Dec. 2007.
doi:10.1109/TAP.2007.910516

15. Kan, H. K., R. B. Waterhouse, A. M. Abbosh, and M. E. Bialkowski, "Simple broadband planar CPW-fed Quasi-Yagi antenna," IEEE Antennas Wireless Propag. Lett., Vol. 6, 18-20, 2007.
doi:10.1109/LAWP.2006.890751

16. Lin, S., G.-L. Huang, R.-N. Cai, and J.-X. Wang, "Novel printed Yagi-Uda antenna with highgain and broadband," Progress In Electromagnetics Research Letters, Vol. 20, 107-117, 2011.
doi:10.2528/PIERL10102804

17. Estrada, J. G., C. I. Paez, and A. Fajardo, "A new broadband quasi Yagi-Uda antenna with an EBG-truncated ground plane," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1392-1395, 2013.
doi:10.1109/LAWP.2013.2286758

18. Yeo, J. and J.-I. Lee, "Bandwidth enhancement of double-dipole Quasi-Yagi antenna using stepped slotline structure," IEEE Antennas Wireless Propag. Lett., Vol. 15, 694-697, 2016.
doi:10.1109/LAWP.2015.2469677

19. Farran, M., et al., "Compact Quasi-Yagi antenna with folded dipole fed by tapered integrated balun," Electron. Lett., Vol. 52, No. 10, 789-790, May 2016.
doi:10.1049/el.2016.0528

20. Luo, Y., Q. X. Chu, and J. Bornemann, "A differential-fed Yagi-Uda antenna with enhanced bandwidth via addition of parasitic resonator," Microw. Opt. Technol. Lett., Vol. 59, No. 1, 156-159, Jan. 2017.
doi:10.1002/mop.30253

21. Chu, H., Y.-X. Guo, H. Wong, and X. Shi, "Wideband self-complementary Quasi-Yagi antenna for millimeter-wave systems," IEEE Antennas Wireless Propag. Lett., Vol. 10, 322-325, 2011.
doi:10.1109/LAWP.2011.2142171

22. Liang, Z., J. Liu, Y. Zhang, and Y. Long, "A novel microstrip quasi Yagi array antenna with annular sector directors," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4524-4529, Oct. 2015.
doi:10.1109/TAP.2015.2456875

23. Huang, E. and T. Chiu, "Printed Yagi antenna with multiple reflectors," Electron. Lett., Vol. 40, No. 19, 1165-1166, Sep. 2004.
doi:10.1049/el:20046087

24. Wu, J., Z. Zhao, Z. Nie, and Q.-H. Liu, "Bandwidth enhancement of a planar printed Quasi-Yagi antenna with size reduction," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 463-467, Jan. 2014.
doi:10.1109/TAP.2013.2287286

25. Luo, Y. and Q.-X. Chu, "A Yagi-Uda antenna with a stepped-width reflector shorter than the driven element," IEEE Antennas Wireless Propag. Lett., Vol. 15, 564-567, 2016.
doi:10.1109/LAWP.2015.2458351

26. Ding, K., C. Gao, B. Zhang, Y. Wu, and D. Qu, "A compact printed unidirectional broadband antenna with parasitic patch," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2341-2344, 2017.
doi:10.1109/LAWP.2017.2718000

27. Jehangir, S. S. and M. S. Sharawi, "A miniaturized UWB biplanar Yagi like MIMO antenna system," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2320-2323, 2017.
doi:10.1109/LAWP.2017.2716963

28. Kumar, H. and G. Kumar, "A broadband planar modified Quasi-Yagi using log-periodic antenna," Progress In Electromagnetics Research Letters, Vol. 73, 23-30, 2018.
doi:10.2528/PIERL17102005

29. Chopra, R. and G. Kumar, "Uniplanar microstrip antenna for endfire radiation," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3422-3426, May 2019.
doi:10.1109/TAP.2019.2900334

30. Solanki, R., "Compact and broadband uniplanar Yagi MSA for sub-6 GHz 5G frequency band," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, 2021.

31. Gheethan, A. A. and D. E. Anagnostou, "The design and optimization of planar LPDAs," PIERS Online, Vol. 4, No. 8, 811-814, 2008.
doi:10.2529/PIERS071220141433

32. Anagnostou, D. E., J. Papapolymerou, M. M. Tentzeris, and C. G. Christodoulou, "A printed log-periodic koch-dipole array (LPKDA)," IEEE Antennas Wireless Propag. Lett., Vol. 7, 456-460, 2008.
doi:10.1109/LAWP.2008.2001765

33. Song, L., Y. Nie, and J. Wang, "A novel meander line microstrip log-periodic dipole antenna for dual-polarized radar systems," Progress In Electromagnetics Research Letters, Vol. 56, 123-128, 2015.
doi:10.2528/PIERL15081403

34. Jardon-Aguilar, H., J. A. Tirado-Mendez, R. Flores-Leal, and R. Linares-Miranda, "Reduced log-periodic dipole antenna using a cylindrical-hat cover," IET Microwaves, Antennas & Propagation, Vol. 5, No. 14, 1697-1702, Nov. 18, 2011.
doi:10.1049/iet-map.2011.0077

35. Casula, G. A., P. Maxia, G. Mazzarella, and G. Montisci, "Design of a printed log-periodic dipole array for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 38, 15-26, 2013.
doi:10.2528/PIERC13012704

36. Lei, F., Z. Li, Q.-X. Guo, H. Zhang, X. Zhang, J. Wang, Gu. Liu, J.-H. Wang, and Y. L. Yang, "A monolayer multi-octave bandwidth log-periodic microstrip antenna," Progress In Electromagnetics Research Letters, Vol. 41, 97-104, 2013.
doi:10.2528/PIERL13052105

37. Zhai, G. H., Y. Cheng, D. Min, S. Z. Zhu, and J. J. Gao, "Wideband simplified feed for printed log-periodic dipole array antenna," Electron. Lett., Vol. 49, No. 23, 1430-1432, Nov. 2013.
doi:10.1049/el.2013.2184

38. Mirzapour, M. I., S. M. J. Razavi, and S. H. M. Armaki, "Ultra-wideband planar LPDA antenna with mode converter balun," Electron. Lett., Vol. 50, No. 12, 848-850, Jun. 5, 2014.
doi:10.1049/el.2013.4027

39. Qu, S. W., J. L. Li, Q. Xue, and C. H. Chan, "Wideband periodic endfire antenna with bowtie dipoles," IEEE Antennas Wireless Propag. Lett., Vol. 7, 314-317, 2008.

40. Gao, X., Z. Shen, and C. Hua, "Conformal VHF log-periodic balloon antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2756-2761, Jun. 2015.
doi:10.1109/TAP.2015.2414478

41. Kyei, D., U. Sim, and Y. B. Jung, "Compact log-periodic dipole array antenna with bandwidth-enhancement techniques for the low frequency band," IET Microwaves, Antennas & Propagation, Vol. 11, No. 5, 711-717, Apr. 2017.
doi:10.1049/iet-map.2016.0611

42. Zhai, G., et al., "Gain-enhanced planar log-periodic dipole array antenna using nonresonant metamaterial," IEEE Trans. Antennas Propag., Vol. 67, No. 9, 6193-6198, Sept. 2019.
doi:10.1109/TAP.2019.2924111