1. Ubeda, E., J. M. Rius, and A. Heldring, "Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4171-4186, 2014.
doi:10.1109/TAP.2014.2325954
2. Freno, B. A., W. A. Johnson, B. F. Zinser, D. R. Wilton, F. Vipiana, and S. Campione, "Characterization and integration of the singular test integrals in the method-of-moments implementation of the electric-field integral equation," Engineering Analysis with Boundary Elements, Vol. 124, No. 8, 185-193, 2021.
doi:10.1016/j.enganabound.2020.12.015
3. Abdelmageed, A., "Efficient evaluation of modal Green's functions arising in EM scattering by bodies of revolution," Progress In Electromagnetics Research, Vol. 27, 337-356, 2000.
doi:10.2528/PIER99061601
4. Mohsen, A. A. K. and A. K. Abdelmageed, "A fast algorithm for treating EM scattering by bodies of revolution," AEU - International Journal of Electronics and Communications, Vol. 55, No. 3, 164-170, 2001.
doi:10.1078/1434-8411-00025
5. Yu, W. M., D. G. Fang, and T. J. Cui, "Closed form modal Green's functions for accelerated computation of bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3452-3461, 2008.
doi:10.1109/TAP.2008.2005459
6. Hamed, S. M. A. and S. O. Bashir, "New exact series for modal Green's function," 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), 83-86, 2015.
doi:10.1109/ICCNEEE.2015.7381434
7. Zubair, M., M. A. Francavilla, D. Zheng, F. Vipiana, and G. Vecchi, "Dual-surface electric field integral equation solution of large complex problems," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2577-2582, 2016.
doi:10.1109/TAP.2016.2552549
8. Bolli, P., G. G. Gentili, R. Nesti, and G. Pelosi, "Coupled BORs scattering via an efficient MoM solution of CFIE," Microwave and Optical Technology Letters, Vol. 37, No. 3, 180-183, 2003.
doi:10.1002/mop.10861
9. Yla-Oijala, P., "Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects," Progress In Electromagnetics Research, Vol. 3, 19-43, 2008.
doi:10.2528/PIERC08032501
10. Hodges, R. E. and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave and Optical Technology Letters, Vol. 14, No. 1, 9-14, 1997.
doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P
11. Tong, M. S. and X. J. Huang, "Accurate solution of electromagnetic scattering by super-thin conducting objects based on magnetic field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5633-5638, 2017.
doi:10.1109/TAP.2017.2734161
12. Gurel, L. and O. Ergul, "Singularity of the magnetic-field integral equation and its extraction," IEEE Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 229-232, 2005.
doi:10.1109/LAWP.2005.851103
13. Ergul, O. and L. Gurel, "Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions," Radio Science, Vol. 41, No. 4, 1-15, 2006.
doi:10.1029/2005RS003307
14. Mohsen, A. A. K. and A. K. Abdelmageed, "Magnetic field integral equation for electromagnetic scattering by conducting bodies of revolution in layered media," Progress In Electromagnetics Research, Vol. 24, No. 3, 19-37, 1999.
doi:10.2528/PIER98122202
15. Andreasen, M., "Scattering from bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 2, 303-310, 1965.
doi:10.1109/TAP.1965.1138406
16. Mautz, J. R. and R. F. Harrington, "Radiation and scattering from bodies of revolution," Applied Scientific Research, Vol. 20, No. 1, 405-435, 1969.
doi:10.1007/BF00382412
17. Glisson, A. W. and D. R. Wilton, "Simple and efficient numerical techniques for treating bodies of revolution,", Mississippi Univ University, 1979.
18. Wood, W. D., A. W. Wood, and J. L. Fleming, "EM scattering from bodies of revolution using the locally corrected Nyström method," IEEE Antennas and Propagation Society Symposium, Vol. 4, 4036-4039, 2004.
doi:10.1109/APS.2004.1330236
19. Vidal, C. F. V. P. and U. C. Resende, "Solution of integral equation in scattering analysis of conducting bodies of revolution by mom with first type elliptic integrals," Proceedings of the IV International Conference on Computational Methods for Coupled Problems, 1232-1238, 2011.
20. Lai, J. and M. O'Neil, "A fast and high order algorithm for the electromagnetic scattering of axis-symmetric objects," 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), 1-2, 2018.
21. Gedney, S. and R. Mittra, "The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution," IEEE Transactions on Antennas and Propagation, 92-95, 1988.
22. Gedney, S. D. and R. Mittra, "The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 3, 313-322, 1990.
doi:10.1109/8.52253
23. Tong, M. S. and W. C. Chew, "Evaluation of singular Fourier coefficients in solving electromagnetic scattering by body of revolution," Radio Science, Vol. 43, No. 4, 1-9, 2008.
doi:10.1029/2007RS003755
24. Su, T., D. Ding, Z. Fan, and R. Chen, "Efficient analysis of EM scattering from bodies of revolution via the ACA," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 983-985, 2013.
doi:10.1109/TAP.2013.2292079
25. Gibson, W. C., The Method of Moments in Electromagnetics, CRC Press, 2014.
doi:10.1201/b17119
26. Schmitz, J. L., "Efficient solution for electromagnetic scattering using the dual-surface magnetic-field integral equation for bodies of revolution," Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, 2318-2321, 1994.
doi:10.1109/APS.1994.408019
27. Fleming, J. L., A. W. Wood, and J. W. D. Wood, "Locally corrected Nyström method for EM scattering by bodies of revolution," Journal of Computational Physics, Vol. 196, No. 1, 41-52, 2004.
doi:10.1016/j.jcp.2003.10.029
28. Ubeda Farré, E., Contribution to the Improvement of Integral Equation Methods for Penetrable Scatterers, Universitat Politècnica de Catalunya, 2001.
29. Resende, U. C., F. J. S. Moreira, and O. M. C. Pereira-Filho, "Efficient evaluation of singular integral equations in moment method analysis of bodies of revolution," Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), Vol. 6, No. 2, 373-391, 2007.
30. Vaessen, J. A. H. M., M. C. van Beurden, and A. G. Tijhuis, "Accurate and efficient computation of the modal Green's function arising in the electric-field integral equation for a body of revolution," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3294-3304, 2012.
doi:10.1109/TAP.2012.2196911
31. Trefethen, L. N. and J. Weideman, "The exponentially convergent trapezoidal rule," SIAM Review, Vol. 56, No. 3, 385-458, 2014.
doi:10.1137/130932132
32. Biggs, F., L. B. Mendelsohn, and J. B. Mann, "Hartree-Fock Compton profiles for the elements," Atomic Data and Nuclear Data Tables, Vol. 16, No. 3, 201-309, 1975.
doi:10.1016/0092-640X(75)90030-3
33. Wolfram Research, NIntegrate, Wolfram Language function, https://reference.wolfram.com/language/ref/NIntegrate.html, 1988 (updated 2014).
34. Umashankar, K. R., "Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques," Wave Motion, Vol. 10, No. 6, 493-525, 1988.
doi:10.1016/0165-2125(88)90010-8
35. Harrington, R. F., "The method of moments in electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 1, No. 3, 181-200, 1987.
doi:10.1163/156939387X00018
36. Vaessen, J. A. H. M., Efficient Modeling of Electromagnetic Fields in Stochastic Configurations, Technische Universiteit Eindhoven, 2015.