Vol. 108
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-02-16
Highly Selective UWB Bandpass Filter with Multi-Notch Characteristics Using Comb Shaped Resonator
By
Progress In Electromagnetics Research M, Vol. 108, 89-101, 2022
Abstract
This paper aims to present a highly selective, compact size new ultra-wideband (UWB) bandpass filter with three sharp notches for UWB indoor applications. The fundamental geometry of the filter is based on modified multi-mode resonator (MMR) structure which comprises a open-ended step impedance resonator (SIR) attached to an interdigitated uniform impedance resonator (UIR). Realizing a Comb-shaped resonator structure below the UIR and symmetrically extending the lower arm edge of the interdigital coupled lines, three notches are generated at 6 GHz, 6.53 GHz, and 8.35 GHz. These notches have improved the UWB bandpass filter responses by suppressing the existing interferences in the UWB passband created by Wi-Fi 6E (6 GHz), super-extended C band (6.425 GHz~6.725 GHz), X band satellite communications for satellite TV networks or raw satellite feeds (7.25 GHz~8.395 GHz). Concurrently the notched band filter has achieved superiority in other salient features concerning passband and stop band of the filter such as a high passband fractional bandwidth (115.76%), low return loss (-13.27 dB), low insertion loss (0.44 dB~0.97 dB), wide upper stop band (5.37 GHz), nearly flat group delay (0.28 ns~0.45 ns) etc. The ultimate design of UWB bandpass filter is fabricated and verified by comparing the simulated filter responses with the measured results indicating a good agreement.
Citation
Piali Chakraborty, Partha Pratim Shome, Jyoti Ranjan Panda, and Arindam Deb, "Highly Selective UWB Bandpass Filter with Multi-Notch Characteristics Using Comb Shaped Resonator," Progress In Electromagnetics Research M, Vol. 108, 89-101, 2022.
doi:10.2528/PIERM21112601
References

1. "Revision of Part 15 of the Commission's rules regarding ultra-wideband transmission system,", FCC, Washington, DC, Tech. Rep. ET-Docket 98-153, Apr. 2002.

2. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 796-798, Nov. 2005.

3. Jiang, Y., W. Tang, Y. Shi, P. Zhou, and L. Feng, "Compact and low insertion loss UWB on-chip bandpass filter using coupled meanderedline," Microw. Opt. Technol. Lett., 1-7, 2020.

4. Zeng, J., X. Li, and Z. Qi, "UWB bandpass filter with compact size and wide upper stopband," Microw. Opt. Technol. Lett., 1-5, 2019.

5. Kuo, T. N., S. C. Lin, and C. H. Chen, "Compact ultra-wideband bandpass filter using composite microstrip-coplanar-waveguide structure," IEEE Trans. Microwave Theory Tech., Vol. 54, 3772-3778, Oct. 2006.
doi:10.1109/LMWC.2007.899314

6. Shaman, H. and J.-S. Hong, "Asymmetric parallel-coupled lines for notch implementation in UWB filters," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 7, 516-518, Jul. 2007.
doi:10.1109/LMWC.2010.2053024

7. Chu, Q. X. and X. K. Tian, "Design of UWB bandpass filter using stepped-impedance stub-loaded resonator," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 501-503, Sep. 2010.

8. Chakraborty, P., P. P. Shome, A. Deb, A. Neogi, and J. R. Panda, "Compact configuration of open ended stub loaded multi-mode resonator based UWB bandpass filter with high selectivity," IEEE 8th International Conference on Signal Processing and Integrated Networks (SPIN), 2021.
doi:10.1109/MMM.2021.3078040

9. Shome, P. P., T. Khan, S. K. Koul, and Y. M. M. Antar, "Two decades of UWB filter technology: From elementary designs-to-recent developments," IEEE Microwave Magazine, Vol. 22, No. 8, 1-20, Aug. 2021.

10. Shome, P. P. and T. Khan, "A compact design of circular-ring shaped MMR based bandpass filter for UWB applications," Proc. of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Dec. 2019.
doi:10.1109/TMTT.2006.882883

11. Gomez-Garcia and J. I. Alonso, "Systematic method for the exact synthesis of ultra-wideband filtering responses using high-pass and low-pass sections," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 10, 3751-3764, Oct. 2006.
doi:10.1109/LMWC.2013.2296291

12. Song, Y., G. M. Yang, and W. Geyi, "Compact UWB bandpass filter with dual notched bands using defected ground structures," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 4, 230-232, Apr. 2014.
doi:10.1016/j.aeue.2016.11.004

13. Sarkar, D., T. Moyra, and L. Murmu, "An ultra-wideband (UWB) bandpass filter with complementary split ring resonator for coupling improvement," International Journal of Electronics and Communication (AEU), Vol. 71, 89-95, 2017.

14. Abbosh, A. M., "Planar bandpass filters for ultra-wideband applications," IEEE Trans. Microwave Theory Tech., Vol. 55, 2262-2269, Oct. 2007.
doi:10.1109/LMWC.2011.2128302

15. Ghatak, R., P. Sarkar, R. K. Mishra, and D. R. Poddar, "A compact UWB bandpass filter with embedded SIR as band notch structure," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 5, 261-263, May 2011.

16. Janapala, D. K. and M. Nesasudha, "A compact ultra wide band bandpass filter with dual band notch designed based on composite right/left-handed transmission line unit cell," Int. J. RF Microw. Comput. Aided Eng., 2018.
doi:10.1002/mop.24093

17. Hsiao, P. Y. and R. M. Weng, "A compact ultra-wideband bandpass filter with WLAN notch band," Microw. Opt. Technol. Lett., Vol. 51, No. 2, 503-507, Feb. 2009.

18. Kumari, P., P. Sarkar, and R. Ghatak, "A multi-stub loaded compact UWB BPF with a broad notch band and extended stopband characteristics," Int. J. RF Microw. Comput. Aided Eng., 2020.

19. Ghazali, A. N., M. Sazid, and S. Pal, "A miniaturized low-cost microstrip-to-coplanar waveguide transition-based ultra-wideband bandpass filter with multiple transmission zeros," Microw. Opt. Technol. Lett., 1-6, 2020.

20. Ghazali, A. N., M. Sazid, and S. Pal, "Multiple passband transmission zeros embedded compact UWB filter based on microstrip/CPW transition," International Journal of Electronics and Communication (AEU), Vol. 129, 1-6, 2021.
doi:10.1049/joe.2018.5071

21. Sangam, R. S. and R. S. Kshetrimayum, "Notched UWB filter using exponential tapered impedance line stub loaded microstrip resonator," J. Eng., Vol. 2018, No. 9, 768-772, 2018.

22. Wang, C., X. Xi, Y. Zhao, and X. Shi, "Compact tri-notched wideband bandpass filter based on multiple resonances with wide upper stopband," Microw. Opt. Technol. Lett., 1-6, 2020.

23. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, Vol. 4, Springer Series in Advanced Microelectronics, 2001.
doi:10.1002/9781118197981

24. Zhu, L., S. Sun, and R. Li, Microwave Bandpass Filters for Wideband Communications, John Wiley & Sons, Inc., 2012.

25. Ansoft Corporation Ansoft HFSS (Version 11), 2007.
doi:10.2528/PIERM20042602

26. Basit, A., M. I. Khattak, and M. Alhasan, "Design and analysis of a microstrip planar UWB bandpass filter with triple notch bands for WiMAX, WLAN, and X-band satellite communication systems," Progress In Electromagnetics Research M, Vol. 93, 155-164, 2020.
doi:10.2528/PIERL19090505

27. Liu, F. and M. Qun, "A new compact UWB bandpass filter with quad notched characteristics," Progress In Electromagnetics Research Letters, Vol. 88, 83-88, 2020.
doi:10.3390/electronics8111316

28. Weng, M. H., C. W. Hsu, S. W. Lan, and R. Y. Yang, "An ultra-wideband bandpass filter with a notch band and wide upper bandstop performances," Electronics, Vol. 8, 1316, 2019.

29. Sazid, M. and N. S. Raghava, "Planar UWB-bandpass filter with multiple passband transmission zeros," International Journal of Electronics and Communication (AEU), Vol. 134, 1-7, 2021.