1. Lu, C. C. and W. C. Chew, "Fast algorithm for solving hybrid integral equations," IEEE Proceedings - H, Vol. 140, No. 6, 455-460, 1993.
doi:10.1049/ip-d.1993.0060
2. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE Press, 1993.
doi:10.1109/9780470544631
3. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, 2008.
4. Seo, S. M., "A fast IE-FFT algorithm to analyze electrically large planar microstrip antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 983-987, Jun. 2018.
doi:10.1109/LAWP.2018.2828158
5. Liu, Y., X. Pan, and X. Sheng, "A fast algorithm for volume integral equation using interpolative decomposition and multilevel fast multipole algorithm," 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 519-522, 2016.
6. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410
7. Zhao, K. Z., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898
8. Liu, Z., X. Wang, D. Tang, Y. Zhang, S. Jie, and X. Liu, "MLFMA-ACA based method for efficient calculation of scattering from underground targets," 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), 1-3, 2018.
9. Carpentieri, B., I. S. Duff, L. Giraud, et al. "Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations," SIAM Journal on Scientific Computing, Vol. 27, No. 3, 774-792, 2005.
doi:10.1137/040603917
10. Pan, X., W. Pi, M. Yang, Z. Peng, and X. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2571-2574, May 2012.
doi:10.1109/TAP.2012.2189746
11. Carpentieri, B., "Algebraic preconditioners for the fast multipole method in electromagnetic scattering analysis from large structures: Trends and problems," Electronic Journal of Boundary Elements, Vol. 7, No. 1, 2009.
doi:10.14713/ejbe.v7i1.952
12. Miller, E. K., "Using adaptive sampling to minimize the number of samples needed to represent a transfer function," IEEE Antennas and Propagation Society International Symposium. 1996 Digest, Vol. 1, 588-591, Baltimore, MD, USA, 1996.
13. Miller, E. K., "Adaptive sparse sampling to estimate radiation and scattering patterns to a specified uncertainty with model-based parameter estimation: Compute patterns using as few as two to four samples per lobe," IEEE Antennas and Propagation Magazine, Vol. 57, No. 4, 103-113, Aug. 2015.
doi:10.1109/MAP.2015.2453920
14. Cockrell, C. R. and F. B. Beck, "Asymptotic waveform evaluation (AWE) technique for frequency domain electromagnetic analysis," NASA Tech. Memo., 110292, Nov. 1996.
15. Wu, B. and X. Sheng, "Application of asymptotic waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2597-2604, May 2013.
doi:10.1109/TAP.2013.2246532
16. Jeong, Y., I. Hong, H. Chun, Y. B. Park, Y. Kim, and J. Yook, "Fast analysis over a wide band using Chebyshev approximation with Clenshaw-Lord approximation," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 1353-1355, 2014.
doi:10.1109/EuCAP.2014.6902029
17. Monje-Real, A. and V. de la Rubia, "Electric field integral equation fast frequency sweep for scattering of nonpenetrable objects via the reduced-basis method," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 6232-6244, Aug. 2020.
doi:10.1109/TAP.2020.2992882
18. Wu, L., et al. "MLACE-MLFMA combined with reduced basis method for efficient wideband electromagnetic scattering from metallic targets," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4738-4747, Jul. 2019.
doi:10.1109/TAP.2019.2911352
19. Kong, W., J. Xie, F. Zhou, X. Yang, R. Wang, and K. Zheng, "An efficient FG-FFT with optimal replacement scheme and inter/extrapolation method for analysis of electromagnetic scattering over a frequency band," IEEE Access, Vol. 7, 127511-127520, 2019.
doi:10.1109/ACCESS.2019.2939484
20. Song, J. M. and W. C. Chew, "Broadband time-domain calculation using FISC," IEEE Antennas and Propagation Society International Symposium, 552, 2002.
doi:10.1109/APS.2002.1018273
21. Lu, C. C., "An extrapolation method based on current for rapid frequency and angle sweeps in far-field calculation in an integral equation algorithm," ACES Journal, Vol. 21, No. 1, 90-98, 2006.
22. Erdemli, Y. E., J. Gong, C. J. Reddy, and J. L. Volakis, "Fast RCS pattern fill using AWE technique," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 11, 1752-1753, Nov. 1998.
doi:10.1109/8.736639
23. Reddy, C. J., M. D. Deshpande, C. R. Cockrell, and F. B. Beck, "Fast RCS computation over a frequency band using method of moments in conjunction with asymptotic waveform evaluation technique," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 8, 1229-1233, Aug. 1998.
doi:10.1109/8.718579
24. Chew, W. C., J. M. Song, E. Michielssen, et al. Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
25. Surma, M., "Efficient wideband analysis of electromagnetic scattering and radiation problems," 15th International Conference on Microwaves, Radar and Wireless Communications, 291-294, 2004.
doi:10.1109/MIKON.2004.1356922
26. Peng, Z. and X. Sheng, "A bandwidth estimation approach for the asymptotic waveform evaluation technique," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 913-917, Mar. 2008.
doi:10.1109/TAP.2008.917017
27. Lehmensiek, R. and P. Meyer, "An efficient adaptive frequency sampling algorithm for model-based parameter estimation as applied to aggressive space mapping," Microwave and Optical Technology Letters, Vol. 24, No. 1, 71-78, 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<71::AID-MOP20>3.0.CO;2-O
28. Wu, L., Y. Zhao, Q. Cai, Z. Zhang, and J. Hu, "An adaptive segmented reduced basis method for fast interpolating the wideband scattering of the dielectric-metallic targets," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2235-2239, Dec. 2020.
doi:10.1109/LAWP.2020.3028455
29. Wu, J. W. and T. J. Cui, "Minimal rational interpolation and its application in fast broadband simulation," IEEE Access, Vol. 7, 177813-177826, 2019.
doi:10.1109/ACCESS.2019.2958369
30. Wang, X., H. Gong, S. Zhang, Y. Liu, R. Yang, and C. Liu, "Efficient RCS computation over a broad frequency band using subdomain MoM and chebyshev approximation technique," IEEE Access, Vol. 8, 33522-33531, 2020.
doi:10.1109/ACCESS.2020.2974070
31. Liu, Z. W., R. S. Chen, and J. Q. Chen, "Adaptive sampling cubic-spline interpolation method for efficient calculation of monostatic RCS," Microwave and Optical Technology Letters, Vol. 50, No. 3, 751-755, 2008.
doi:10.1002/mop.23211
32. Liu, Z. W., D. Z. Ding, Z. F. Fan, et al. "Adaptive sampling bicubic spline interpolation method for fast calculation of monostatic RCS," Microwave and Optical Technology Letters, Vol. 50, No. 7, 1851-1857, 2008.
doi:10.1002/mop.23540
33. Lehmensiek, R. and P. Meyer, "Creating accurate multivariate rational interpolation models of microwave circuits by using efficient adaptive sampling to minimize the number of computational electromagnetic analyses," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 8, 1419-1430, Aug. 2001.
doi:10.1109/22.939922
34. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818