1. Zhao, Z.-Q., P. Zheng, S.-T. Xu, and X. Wu, "Object detection with deep learning: A review," IEEE Transactions on Neural Networks and Learning Systems, Vol. 30, No. 11, 3212-3232, 2019.
doi:10.1109/TNNLS.2018.2876865
2. Trajanovski, S., C. Shan, P. J. C. Weijtmans, S. G. B. de Koning, and T. J. M. Ruers, "Tongue tumor detection in hyperspectral images using deep learning semantic segmentation," IEEE Transactions on Biomedical Engineering, Vol. 68, No. 4, 1330-1340, 2020.
doi:10.1109/TBME.2020.3026683
3. Zhao, S., D. M. Zhang, and H. W. Huang, "Deep learning-based image instance segmentation for moisture marks of shield tunnel lining," Tunnelling and Underground Space Technology, Vol. 95, 103156, 2020.
doi:10.1016/j.tust.2019.103156
4. Yang, W., X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao, "Deep learning for single image super-resolution: A brief review," IEEE Transactions on Multimedia, Vol. 21, No. 12, 3106-3121, 2019.
doi:10.1109/TMM.2019.2919431
5. Ledig, C., L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z.Wang, et al. "Photo-realistic single image super-resolution using a generative adversarial network," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4681-4690, 2017.
6. Kim, K. I. and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 6, 1127-1133, 2010.
doi:10.1109/TPAMI.2010.25
7. Kirkland, E. J., "Bilinear interpolation," Advanced Computing in Electron Microscopy, 261-263, Springer, 2010.
doi:10.1007/978-1-4419-6533-2_12
8. Liu, T., K. De Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, "Deep learning-based super-resolution in coherent imaging systems," Scientic Reports, Vol. 9, No. 1, 1-13, 2019.
9. Dong, C., C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 2, 295-307, 2015.
doi:10.1109/TPAMI.2015.2439281
10. He, K., X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778, 2016.
11. Lim, B., S. Son, H. Kim, S. Nah, and K. M. Lee, "Enhanced deep residual networks for single image super-resolution," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 136-144, 2017.
12. Zhang, Y., K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, "Image superresolution using very deep residual channel attention networks," Proceedings of the European Conference on Computer Vision (ECCV), 286-301, 2018.
13. Huang, G., Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700-4708, 2017.
14. Zhang, Y., Y. Tian, Y. Kong, B. Zhong, and Y. Fu, "Residual dense network for image super-resolution," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2472-2481, 2018.
15. Li, Z., J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, "Feedback network for image super-resolution," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3867-3876, 2019.
16. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015.
17. Chen, K., J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Shi, W. Ouyang, et al. "Hybrid task cascade for instance segmentation," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4974-4983, 2019.
18. Cai, Z. and N. Vasconcelos, "Cascade r-cnn: Delving into high quality object detection," Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 6154-6162, 2018.
19. Hell, S. W. and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion uorescence microscopy," Optics Letters, Vol. 19, No. 11, 780-782, 1994.
20. Hess, S. T., T. P. K. Girirajan, and M. D. Mason, "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy," Biophysical Journal, Vol. 91, No. 11, 4258-4272, 2006.
21. Rust, M. J., M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm)," Nature Methods, Vol. 3, No. 10, 793-796, 2006.
22. Gustafsson, M. G. L., "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of Microscopy, Vol. 198, No. 2, 82-87, 2000.
23. Weigert, M., U. Schmidt, T. Boothe, A. Muller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, et al. "Content-aware image restoration: Pushing the limits of fluorescence microscopy," Nature Methods, Vol. 15, No. 12, 1090-1097, 2018.
24. Wang, H., Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Gunaydin, L. A. Bentolila, C. Kural, and A. Ozcan, "Deep learning enables cross-modality superresolution in fluorescence microscopy," Nature Methods, Vol. 16, No. 1, 103-110, 2019.
25. Qiao, C., D. Li, Y. Guo, C. Liu, T. Jiang, Q. Dai, and D. Li, "Evaluation and development of deep neural networks for image super-resolution in optical microscopy," Nature Methods, Vol. 18, No. 2, 194-202, 2021.
26. Shi, W., J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1874-1883, 2016.
27. Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, "Mobilenets: Efficient convolutional neural networks for mobile vision applications,", arXiv preprint arXiv:1704.04861, 2017.
28. Ramachandran, P., B. Zoph, and Q. V. Le, "Searching for activation functions,", arXiv preprint arXiv:1710.05941, 2017.
29. Lin, T.-Y., P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2117-2125, 2017.
30. Allen, D. M., "Mean square error of prediction as a criterion for selecting variables," Technometrics, Vol. 13, No. 3, 469-475, 1971.
31. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, Vol. 13, No. 4, 600-612, 2004.
32. Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9, 2015.
33. Descloux, A., K. S. Gruβmayer, and A. Radenovic, "Parameter-free image resolution estimation based on decorrelation analysis," Nature Methods, Vol. 16, No. 9, 918-924, 2019.
34. Abramoff, M. D., P. J. Magalhaes, and S. J. Ram, "Image processing with imagej," Biophotonics International, Vol. 11, No. 7, 36-42, 2004.