Vol. 173
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-02-28
Recent Progress on Achromatic Metalenses (Invited Review)
By
Progress In Electromagnetics Research, Vol. 173, 9-23, 2022
Abstract
As a potential alternative to conventional lenses, metalenses have the advantage of ultrathin volume and light weight. Such miniaturization is expected to apply to compact, nanoscale optical devices such as micro-cameras and high-resolution display. However, chromatic aberration is an important problem in the application of metalenses, which will damage the imaging resolution and color reality for multi-wavelength incident light. Here, we briefly discuss recent development of design methods for achromatic metalenses, containing one or more pieces, and experimental evaluation of their performances.
Citation
Qikai Chen, Yitian Liu, Yaoyuan Lei, Sijie Pian, Zhuning Wang, and Yaoguang Ma, "Recent Progress on Achromatic Metalenses (Invited Review)," Progress In Electromagnetics Research, Vol. 173, 9-23, 2022.
doi:10.2528/PIER21103004
References

1. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
doi:10.1126/science.1210713

2. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.
doi:10.1021/nl302516v

3. Khorasaninejad, M., F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, "Achromatic metasurface lens at telecommunication wavelengths," Nano Lett., Vol. 15, 5358-5362, 2015.
doi:10.1021/acs.nanolett.5b01727

4. Aieta, F., M. A. Kats, P. Genevet, and F. Capasso, "Multiwavelength achromatic metasurfaces by dispersive phase compensation," Science, Vol. 347, 1342-1345, 2015.
doi:10.1126/science.aaa2494

5. Lalanne, P. and P. Chavel, "Metalenses at visible wavelengths: Past, present, perspectives," Laser Photonics Rev., Vol. 11, 2016.

6. Liang, H., Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, "Ultrahigh numerical aperture metalens at visible wavelengths," Nano Lett., Vol. 18, 4460-4466, 2018.
doi:10.1021/acs.nanolett.8b01570

7. Huang, L., X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, "Three-dimensional optical holography using a plasmonic metasurface," Nat. Commun., Vol. 4, 2808, 2013.
doi:10.1038/ncomms3808

8. Faraji-Dana, M., E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, "Compact folded metasurface spectrometer," Nat. Commun., Vol. 9, 4196, 2018.
doi:10.1038/s41467-018-06495-5

9. Tittl, A., A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science, Vol. 360, 1105-1109, 2018.
doi:10.1126/science.aas9768

10. Zhu, A. Y., W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R. C. Devlin, and F. Capasso, "Ultra-compact visible chiral spectrometer with meta-lenses," APL Photonics, Vol. 2, 036103, 2017.
doi:10.1063/1.4974259

11. Aieta, F., P. Genevet, M. Kats, and F. Capasso, "Aberrations of flat lenses and aplanatic metasurfaces," Opt. Express., Vol. 21, 31530-31539, 2013.
doi:10.1364/OE.21.031530

12. Millán, M. S., J. Otón, and E. Pérez-Cabré, "Chromatic compensation of programmable Fresnel lenses," Opt. Express, Vol. 14, 6226-6242, 2006.
doi:10.1364/OE.14.006226

13. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Multiwavelength metasurfaces through spatial multiplexing," Sci. Rep., Vol. 6, 32803, 2016.
doi:10.1038/srep32803

14. Hu, J., C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, "Plasmonic lattice lenses for multiwavelength achromatic focusing," ACS Nano., Vol. 10, 10275-10282, 2016.
doi:10.1021/acsnano.6b05855

15. Tang, F., X. Ye, Q. Li, Y. Wang, H. Yu, W. Wu, B. Li, and W. Zheng, "Dielectric metalenses at long-wave infrared wavelengths: Multiplexing and spectroscope," Results Phys., Vol. 18, 103215, 2020.
doi:10.1016/j.rinp.2020.103215

16. Khorasaninejad, M., Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, "Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion," Nano Lett., Vol. 17, 1819-1824, 2017.
doi:10.1021/acs.nanolett.6b05137

17. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Dispersionless metasurfaces using dispersive meta-atoms," Conference on Lasers and Electro-Optics (CLEO), 1-2, 2016.

18. Wang, S., P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nat. Commun., Vol. 8, 187, 2017.
doi:10.1038/s41467-017-00166-7

19. Berry, M. V., "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. Lond., Vol. 392, 45-57, 1996.

20. Kanwal, S., J. Wen, B. Yu, D. Kumar, X. Chen, Y. Kang, C. Bai, and D. Zhang, "High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum," Nanomaterials, Vol. 10, 2020.

21. Wang, S., P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, "A broadband achromatic metalens in the visible," Nat. Nanotechnol., Vol. 13, 227-232, 2018.
doi:10.1038/s41565-017-0052-4

22. Chen, W. T., A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, "A broadband achromatic metalens for focusing and imaging in the visible," Nat. Nanotechnol., Vol. 13, 220-226, 2018.
doi:10.1038/s41565-017-0034-6

23. Khorasaninejad, M., A. Y. Zhu, C. Roques-Carmes, , W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, "Polarization-insensitive metalenses at visible wavelengths," Nano Lett., Vol. 16, 7229-7234, 2016.
doi:10.1021/acs.nanolett.6b03626

24. Guo, Y., Z. Jafari, L. Xu, C. Bao, P. Liao, G. Li, A. Agarwal, L. Kimerling, J. Michel, A. Willner, and L. Zhang, "Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics," Photonics Res., Vol. 7, 1279, 2019.
doi:10.1364/PRJ.7.001279

25. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces," Optica, Vol. 4, 625-632, 2017.
doi:10.1364/OPTICA.4.000625

26. Fan, Z.-B., H.-Y. Qiu, H.-L. Zhang, X.-N. Pang, L.-D. Zhou, L. Liu, H. Ren, Q.-H. Wang, and J.-W. Dong, "A broadband achromatic metalens array for integral imaging in the visible," Light Sci. Appl., Vol. 8, 67, 2019.
doi:10.1038/s41377-019-0178-2

27. Wang, Y., Q. Chen, W. Yang, Z. Ji, L. Jin, X. Ma, Q. Song, A. Boltasseva, J. Han, V. M. Shalaev, and S. Xiao, "High-efficiency broadband achromatic metalens for near-IR biological imaging window," Nat. Commun., Vol. 12, 5560, 2021.
doi:10.1038/s41467-021-25797-9

28. Shrestha, S., A. C. Overvig, M. Lu, A. Stein, and N. Yu, "Broadband achromatic dielectric metalenses," Light Sci. Appl., Vol. 7, 85, 2018.
doi:10.1038/s41377-018-0078-x

29. Ndao, A., L. Hsu, J. Ha, J.-H. Park, C. Chang-Hasnain, and B. Kanté, "Octave bandwidth photonic fishnet-achromatic-metalens," Nat. Commun., Vol. 11, 3205, 2020.
doi:10.1038/s41467-020-17015-9

30. Chung, H., H. Chung, O. D. Miller, and O. D. Miller, "High-NA achromatic metalenses by inverse design," Opt. Express, Vol. 28, 6945-6965, 2020.
doi:10.1364/OE.385440

31. Zhou, M., D. Liu, S. W. Belling, H. Cheng, M. A. Kats, S. Fan, M. L. Povinelli, and Z. Yu, "Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization," ACS Photonics, Vol. 8, 2265-2273, 2021.
doi:10.1021/acsphotonics.1c00100

32. Li, Z., P. Lin, Y.-W. Huang, J.-S. Park, W. T. Chen, Z. Shi, C.-W. Qiu, J.-X. Cheng, and F. Capasso, "Meta-optics achieves RGB-achromatic focusing for virtual reality," Sci. Adv., Vol. 7, eabe4458, 2021.
doi:10.1126/sciadv.abe4458

33. Svanberg, K., "A class of globally convergent optimization methods based on conservative convex separable approximations," SIAM J. Optim., Vol. 12, 555-573, 2002.
doi:10.1137/S1052623499362822

34. Presutti, F. and F. Monticone, "Focusing on bandwidth: Achromatic metalens limits," Optica, Vol. 7, 624, 2020.
doi:10.1364/OPTICA.389404

35. Cheng, Q., M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, "Broadband achromatic metalens in terahertz regime," Sci. Bull., Vol. 64, 1525-1531, 2019.
doi:10.1016/j.scib.2019.08.004

36. Zhao, F., Z. Li, X. Dai, X. Liao, S. Li, J. Cao, Z. Shang, Z. Zhang, G. Liang, G. Chen, H. Li, and Z. Wen, "Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens," Adv. Opt. Mater., Vol. 8, 2000842, 2020.
doi:10.1002/adom.202000842

37. Chen, W. T., A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, "Broadband achromatic metasurface-refractive optics," Nano Lett., Vol. 18, 7801-7808, 2018.
doi:10.1021/acs.nanolett.8b03567

38. Tong, L., J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express, Vol. 12, 1025, 2004.
doi:10.1364/OPEX.12.001025

39. Almeida, V. R., Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett., Vol. 29, 1209, 2004.
doi:10.1364/OL.29.001209

40. Saeidi, C. and D. van der Weide, "Wideband plasmonic focusing metasurfaces," Appl. Phys. Lett., Vol. 105, 053107, 2014.
doi:10.1063/1.4892560

41. Groever, B., W. T. Chen, and F. Capasso, "Meta-lens doublet in the visible region," Nano Lett., Vol. 17, 4902-4907, 2017.
doi:10.1021/acs.nanolett.7b01888

42. Shi, X., D. Meng, Z. Qin, Q. He, S. Sun, L. Zhou, D. R. Smith, Q. H. Liu, T. Bourouina, and Z. Liang, "All-dielectric orthogonal doublet cylindrical metalens in long-wave infrared regions," Opt. Express, Vol. 29, 3524-3532, 2021.
doi:10.1364/OE.414001

43. Zhou, Y., I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. G. Valentine, "Multilayer non-interacting dielectric metasurfaces for multiwavelength metaoptics," Nano Lett., Vol. 18, No. 12, 7529-7537, 2018.
doi:10.1021/acs.nanolett.8b03017

44. Yao, Z., W. Chen, and Y. Chen, "Double-layer metalens with a reduced meta-atom aspect ratio," Opt. Lett., Vol. 46, 1510-1513, 2021.
doi:10.1364/OL.422339

45. McClung, A., M. Mansouree, and A. Arbabi, "At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces," Light Sci. Appl., Vol. 9, 93, 2020.
doi:10.1038/s41377-020-0335-7

46. Kim, C., S.-J. Kim, and B. Lee, "Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations," Opt. Express, Vol. 28, 18059-18076, 2020.
doi:10.1364/OE.387794

47. Huang, Z., M. Qin, X. Guo, C. Yang, and S. Li, "Achromatic and wide-field metalens in the visible region," Opt. Express, Vol. 29, 13542-13551, 2021.
doi:10.1364/OE.422126

48. Johnson, T. J. and J. F. O'rourke, "Method for making replica contour block masters for producing Schmidt corrector plates,", U.S. patent US3837124 A, 1974.

49. Li, M., S. Li, L. K. Chin, Y. Yu, D. P. Tsai, and R. Chen, "Dual-layer achromatic metalens design with an effective Abbe number," Opt. Express, Vol. 28, 26041-26055, 2020.
doi:10.1364/OE.402478

50. Khorasaninejad, M., W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, "Visible wavelength planar metalenses based on titanium dioxide," IEEE J. Sel. Top. Quantum Electron., Vol. 23, 43-58, 2017.
doi:10.1109/JSTQE.2016.2616447

51. Spägele, C., M. Tamagnone, D. Kazakov, M. Ossiander, M. Piccardo, and F. Capasso, "Multifunctional wide-angle optics and lasing based on supercell metasurfaces," Nat. Commun., Vol. 12, 3787, 2021.
doi:10.1038/s41467-021-24071-2

52. Elsawy, M. M. R., A. Gourdin, M. Binois, R. Duvigneau, D. Felbacq, S. Khadir, P. Genevet, and S. Lanteri, "Multiobjective statistical learning optimization of RGB metalens," ACS Photonics, Vol. 8, 2498-2508, 2021.
doi:10.1021/acsphotonics.1c00753

53. Yoon, G., K. Kim, D. Huh, H. Lee, and J. Rho, "Single-step manufacturing of hierarchical dielectric metalens in the visible," Nat. Commun., Vol. 11, 2268, 2020.
doi:10.1038/s41467-020-16136-5

54. Li, N., Z. Xu, Y. Dong, T. Hu, Q. Zhong, Y. H. Fu, S. Zhu, and N. Singh, "Large-area metasurface on CMOS-compatible fabrication platform: Driving flat optics from lab to fab," Nanophotonics, Vol. 9, No. 10, 3071-3087, 2020.
doi:10.1515/nanoph-2020-0063