Vol. 172
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-12-20
Tunable Topological Refractions in Valley Sonic Crystals with Triple Valley Hall Phase Transitions (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 172, 13-22, 2021
Abstract
Topological refractions created by valley sonic crystals (VSCs) have attracted great attentions in the communities of physics and engineering owing to the advantage of zero reflection of sound and the potential for designing advanced acoustic devices. In previous works, topological refractions of valley edge states are demonstrated to be determined by the projections of the valleys K and K′, and two types of topological refractions generally exist at opposite terminals or different frequency bands. However, the realization of tunable topological refractions at the fixed frequency band and terminal still poses great challenge. To overcome this, we report the realization of tunable topological refractions by VSCs with triple valley Hall phase transitions. By simply rotating rods, we realize 3 types of topological waveguides (T1, T2 and T3) composed of two VSCs, in which the projections of the observed valley edge states can be modulated between K and K′. Additionally, based on the measured transmittance spectra, we experimentally demonstrate that these valleyedge states are almost immune to backscattering against sharp bends. More importantly, we realize tunable topological refractions at the fixed frequency band and terminal, and experimentally observe the coexistence of positive and negative refractions for T1 and T3, and negative refractions for T2. The proposed tunable topological refractions have potential applications in designing multi-functional sound antennas and advanced communication devices.
Citation
Ding Jia, Yin Wang, Yong Ge, Shou-Qi Yuan, and Hong-Xiang Sun, "Tunable Topological Refractions in Valley Sonic Crystals with Triple Valley Hall Phase Transitions (Invited Paper)," Progress In Electromagnetics Research, Vol. 172, 13-22, 2021.
doi:10.2528/PIER21102002
References

1. Xiao, D., W. Yao, and Q. Niu, "Valley-contrasting physics in graphene: Magnetic moment and topological transport," Phys. Rev. Lett., Vol. 99, No. 23, 236809, 2007, doi: 10.1103/PhysRevLett.99.236809.
doi:10.1103/PhysRevLett.99.236809

2. Zeng, H., J. Dai, W. Yao, D. Xiao, and X. Cui, "Valley polarization in Mos2 monolayers by optical pumping," Nat. Nanotechnol., Vol. 7, No. 8, 490-493, 2012, doi: 10.1038/nnano.2012.95.
doi:10.1038/nnano.2012.95

3. Zhang, F., A. H. MacDonald, and E. J. Mele, "Valley chern numbers and boundary modes in gapped bilayer graphene," Proc. Natl. Acad. Sci., Vol. 110, No. 26, 10546-10551, USA, 2013, doi: 10.1073/pnas.1308853110.
doi:10.1073/pnas.1308853110

4. Ju, L., Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, Jr., C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, "Topological valley transport at bilayer graphene domain walls," Nature, Vol. 520, No. 7549, 650-655, 2015, doi: 10.1038/nature14364.
doi:10.1038/nature14364

5. Schaibley, J. R., H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, "Valleytronics in 2D materials," Nat. Rev. Maters, Vol. 1, No. 11, 16055, 2016, doi: 10.1038/natrevmats.2016.55.
doi:10.1038/natrevmats.2016.55

6. Li, J., R. X. Zhang, Z. Yin, J. Zhang, K. Watanabe, T. Taniguchi, C. Liu, and J. Zhu, "A valley valve and electron beam splitter," Science, Vol. 362, No. 6419, 1149-1152, 2018, doi: 10.1126/science.aao5989.
doi:10.1126/science.aao5989

7. Ma, T. and G. Shvets, "All-Si valley-Hall photonic topological insulator," New J. Phys., Vol. 18, No. 2, 025012, 2016, doi: 10.1088/1367-2630/18/2/025012.
doi:10.1088/1367-2630/18/2/025012

8. Wu, X., Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, and W. Wen, "Direct observation of valley-polarized topological edge states in designer surface plasmon crystals," Nat. Commun., Vol. 8, No. 1, 1304, 2017, doi: 10.1038/s41467-017-01515-2.
doi:10.1038/s41467-017-01515-2

9. Dong, J. W., X. D. Chen, H. Zhu, Y. Wang, and X. Zhang, "Valley photonic crystals for control of spin and topology," Nat. Mater., Vol. 16, No. 3, 298-302, 2017, doi: 10.1038/nmat4807.
doi:10.1038/nmat4807

10. Chen, X. D., F. L. Zhao, M. Chen, and J. W. Dong, "Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation," Phys. Rev. B, Vol. 96, No. 2, 020202, 2017, doi: 10.1103/PhysRevB.96.020202.
doi:10.1103/PhysRevB.96.020202

11. Gao, F., H. R. Xue, Z. J. Yang, K. F. Lai, Y. Yu, X. Lin, Y. D. Chong, G. Shvets, and B. L. Zhang, "Topologically protected refraction of robust kink states in Valley photonic crystals," Nat. Phys., Vol. 14, No. 2, 140-144, 2017, doi: 10.1038/nphys4304.
doi:10.1038/nphys4304

12. Gao, Z., Z. J. Yang, F. Gao, H. R. Xue, Y. H. Yang, J. W. Dong, and B. L. Zhang, "Valley surface-wave photonic crystal and its bulk edge transport," Phys. Rev. B, Vol. 96, No. 20, 201402, 2017, doi: 10.1103/PhysRevB.96.201402.
doi:10.1103/PhysRevB.96.201402

13. Chen, Q. L., L. Zhang, M. J. He, Z. J. Wang, X. Lin, F. Gao, Y. H. Yang, B. L. Zhang, and H. S. Chen, "Valley-Hall photonic topological insulators with dual-band kink states," Adv. Opt. Mate., Vol. 7, No. 15, 1900036, 2019, doi: 10.1002/adom.201900036.
doi:10.1002/adom.201900036

14. Kang, Y. H., X. Ni, X. J. Cheng, A. B. Khanikaev, and A. Z. Genack, "Pseudo-spin-valley coupled edge states in a photonic topological insulator," Nat. Commun., Vol. 9, No. 1, 1-7, 2018, doi: 10.1038/s41467-018-05408-w.
doi:10.1038/s41467-017-02088-w

15. Shalaev, M. I., W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, "Robust topologically protected transport in photonic crystals at telecommunication wavelengths," Nat. Nanotech., Vol. 14, No. 1, 31, 2018, doi: 10.1038/s41565-018-0297-6.
doi:10.1038/s41565-018-0297-6

16. Noh, J., S. Huang, K. P. Chen, and M. C. Rechtsman, "Observation of photonic topological valley Hall edge states," Phys. Rev. Lett., Vol. 120, No. 6, 063902, 2018, doi: 10.1103/PhysRevLett.120.063902.
doi:10.1103/PhysRevLett.120.063902

17. Yang, Y., H. Jiang, and Z. H. Hang, "Topological valley transport in two-dimensional honeycomb photonic crystals," Sci. Rep., Vol. 8, No. 1, 1588, 2018, doi: 10.1038/s41598-018-20001-3.
doi:10.1038/s41598-018-20001-3

18. Yang, Y. H., Z. Gao, H. R. Xue, L. Zhang, M. J. He, Z. J. Yang, R. Singh, Y. D. Chong, B. L. Zhang, and H. S. Chen, "Realization of a three-dimensional photonic topological insulator," Nature, Vol. 565, No. 7741, 622-626, 2019, doi: 10.1038/s41586-018-0829-0.
doi:10.1038/s41586-018-0829-0

19. Zeng, Y., U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, "Electrically pumped topological laser with valley edge modes," Nature, Vol. 578, No. 7794, 246-250, 2020, doi: 10.1038/s41586-020-1981-x.
doi:10.1038/s41586-020-1981-x

20. Pal, R. K. and M. Ruzzene, "Edge waves in plates with resonators: An elastic analogue of the quantum valley Hall effect," New J. Phys., Vol. 19, No. 2, 025001, 2017, doi: 10.1088/1367-2630/aa56a2.
doi:10.1088/1367-2630/aa56a2

21. Huo, S. Y., J. J. Chen, H. B. Huang, and G. L. Huang, "Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins," Sci. Rep., Vol. 7, No. 1, 10335, 2017, doi: 10.1038/s41598-017-10857-2.
doi:10.1038/s41598-017-10857-2

22. Yan, M., J. Y. Lu, F. Li, W. Y. Deng, X. Q. Huang, J. H. Ma, and Z. Y. Liu, "On-chip valley topological materials for elastic wave manipulation," Nat. Mater., Vol. 17, No. 11, 993-998, 2018, doi: 10.1038/s41563-018-0191-5.
doi:10.1038/s41563-018-0191-5

23. Wang, J. and J. Mei, "Topological valley-chiral edge states of lamb waves in elastic thin plates," Appl. Phys. Express, Vol. 11, No. 5, 057302, 2018, doi: 10.7567/apex.11.057302.
doi:10.7567/APEX.11.057302

24. Fan, H., B. Xia, L. Tong, S. Zheng, and D. Yu, "Elastic higher-order topological insulator with topologically protected corner states," Phys. Rev. Lett., Vol. 122, No. 20, 204301, 2019, doi: 10.1103/PhysRevLett.122.204301.
doi:10.1103/PhysRevLett.122.204301

25. Yang, L. Y., K. P. Yu, B. Bonello, B. Djafari-Rouhani, W. Wang, and Y. Wu, "Abnormal topological refraction into free medium at subwavelength scale in valley phononic crystal plates," Phys. Rev. B, Vol. 103, No. 18, 184303, 2021, doi: 10.1103/PhysRevB.103.184303.
doi:10.1103/PhysRevB.103.184303

26. Huang, H. B., J. J. Chen, and S. Y. Hou, "Recent advances in topologic alelastic metamaterials," J. Phys. Condens. Mat., Vol. 33, No. 50, 503002, 2021, doi: 10.1088/1361-648X/ac27d8.
doi:10.1088/1361-648X/ac27d8

27. Ye, L. P., C. Y. Qiu, J. Y. Lu, X. H. Wen, Y. Y. Shen, M. Z. Ke, F. Zhang, and Z. Y. Liu, "Observation of acoustic valley vortex states and valley-chirality locked beam splitting," Phys. Rev. B, Vol. 95, No. 17, 174106, 2017, doi: 10.1103/PhysRevB.95.174106.
doi:10.1103/PhysRevB.95.174106

28. Lu, J. Y., C. Y. Qiu, L. P. Ye, X. Y. Fan, M. Z. Ke, F. Zhang, and Z. Y. Liu, "Observation of topological valley transport of sound in sonic crystals," Nat. Phys., Vol. 13, No. 4, 369-374, 2016, doi: 10.1038/nphys3999.
doi:10.1038/nphys3999

29. Lu, J. Y., C. Y. Qiu, W. Y. Deng, X. Q. Huang, F. Li, F. Zhang, S. Q. Chen, and Z. Y. Liu, "Valley topological phases in bilayer sonic crystals," Phys. Rev. Lett., Vol. 120, No. 11, 116802, 2018, doi: 10.1103/PhysRevLett.120.116802.
doi:10.1103/PhysRevLett.120.116802

30. Zhang, Z., Y. Tian, Y. H. Wang, S. X. Gao, Y. Cheng, X. J. Liu, and J. Christensen, "Directional acoustic antennas based on valley-Hall topological insulators," Adv. Mater, Vol. 30, 1803229, 2018, doi: 10.1002/adma.201803229.
doi:10.1002/adma.201803229

31. Zhang, Z. W., Y. Tian, Y. Cheng, Q. Wei, X. J. Liu, and J. Christensen, "Topological acoustic delay line," Phys. Rev. Appl., Vol. 9, No. 3, 034032, 2018, doi: 10.1103/PhysRevApplied.9.034032.
doi:10.1103/PhysRevApplied.9.034032

32. He, C., S. Y. Yu, H. Ge, H. Wang, Y. Tian, H. Zhang, X. C. Sun, Y. B. Chen, J. Zhou, M. H. Lu, and Y. F. Chen, "Three-dimensional topological acoustic crystals with pseudospin-valley coupled saddle surface states," Nat. Commun., Vol. 9, No. 1, 4555, 2018, doi: 10.1038/s41467-018-07030-2.
doi:10.1038/s41467-018-07030-2

33. Yang, Y. H., Z. J. Yang, and B. L. Zhang, "Acoustic valley edge states in a graphene-like resonator system," J. Appl. Phys., Vol. 123, No. 9, 091713, 2018, doi: 10.1063/1.5009626.
doi:10.1063/1.5009626

34. Zhu, Z. X., X. Q. Huang, J. Y. Lu, M. Yan, F. Li, W. Y. Deng, and Z. Y. Liu, "Negative refraction and partition in acoustic valley materials of a square lattice," Phys. Rev. Appl., Vol. 12, No. 2, 024007, 2019, doi: 10.1103/PhysRevApplied.12.024007.
doi:10.1103/PhysRevApplied.12.024007

35. Shen, Y. Y., C. Y. Qiu, X. X. Cai, L. P. Ye, J. Y. Lu, M. Z. Ke, and Z. Y. Liu, "Valley-projected edge modes observed in underwater sonic crystals," Appl. Phys. Lett., Vol. 114, No. 2, 023501, 2019, doi: 10.1063/1.5049856.
doi:10.1063/1.5049856

36. Xie, B. Y., H. Liu, H. Cheng, Z. Y. Liu, S. Q. Chen, and J. G. Tian, "Acoustic topological transport and refraction in a Kekulé lattice," Phys. Rev. Appl., Vol. 11, No. 4, 044086, 2019, doi: 10.1103/physrevapplied.11.044086.
doi:10.1103/PhysRevApplied.11.044086

37. Tian, Z., C. Shen, J. Li, E. Reit, H. Bachman, J. E. S. Socolar, S. A. Cummer, and T. J. Huang, "Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals," Nat. Commun., Vol. 11, No. 1, 762, 2020, doi: 10.1038/s41467-020-14553-0.
doi:10.1038/s41467-020-14553-0

38. Wang, M. D., W. Y. Zhou, L. Y. Bi, C. Y. Qiu, M. Z. Ke, and Z. Y. Liu, "Valley-locked waveguide transport in acoustic heterostructures," Nat. Commun., Vol. 11, No. 1, 3000, 2020, doi: 10.1038/s41467-020-16843-z.
doi:10.1038/s41467-020-16843-z

39. Jia, D., Y. Ge, H. R. Xue, S. Q. Yuan, H. X. Sun, Y. H. Yang, X. J. Liu, and B. L. Zhang, "Topological refraction in dual-band valley sonic crystals," Phys. Rev. B, Vol. 103, No. 14, 144309, 2021, doi: 10.1103/PhysRevB.103.144309.
doi:10.1103/PhysRevB.103.144309

40. Huang, Z., J. H. Wu, C. Wang, S. K. Yang, and F. Y. Ma, "Resonant-scattering hybrid device for multiband acoustic topology valley transmission," Phys. Rev. B, Vol. 104, No. 9, 094110, 2021, doi: 10.1103/PhysRevB.104.094110.
doi:10.1103/PhysRevB.104.094110

41. Qu, H. F., X. N. Liu, and G. K. Hu, "Topological valley states in sonic crystals with Willis coupling," Appl. Phys. Lett., Vol. 119, No. 5, 051903, 2021, doi: 10.1063/5.0055789.
doi:10.1063/5.0055789

42. He, H. L., C. Y. Qiu, L. P. Ye, X. X. Cai, X. Y. Fan, M. Z. Ke, F. Zhang, and Z. Y. Liu, "Topological negative refraction of surface acoustic waves in a Weyl phononic crystal," Nature, Vol. 560, No. 7716, 61-64, 2018, doi: 10.1038/s41586-018-0367-9.
doi:10.1038/s41586-018-0367-9

43. Yang, Y. H., H. X. Sun, J. P. Xia, H. R. Xue, Z. Gao, Y. Ge, D. Jia, Y. D. Chong, and B. L. Zhang, "Topological triply degenerate point with double Fermi arcs," Nat. Phys., Vol. 15, No. 7, 645-649, 2019, doi: 10.1038/s41567-019-0502-z.
doi:10.1038/s41567-019-0502-z