Vol. 101
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-09
Sensorless Control of Permanent Magnet Synchronous Linear Motor Based on Sliding Mode Variable Structure MRAS Flux Observation
By
Progress In Electromagnetics Research Letters, Vol. 101, 89-97, 2021
Abstract
The object of this paper is a permanent magnet synchronous linear motor (PMLSM), whose control method is based on a model-referenced adaptive system (MRAS), and it analyses the speed identification of a permanent magnet synchronous linear motor without position sensors. The article proposes a new model-referenced adaptive method, which utilises a sliding-mode variable structure control method (SMC), to replace the PI control algorithm utilised in conventional model-referenced adaptive algorithm. The control system of the PMLSM is therefore designed and studied based on the change of the adaptive law in model-referenced adaption. the mathematical model of the PMLSM itself is chosen as the reference model, and the feedback magnetic chain model of the motor output is chosen as the adjustable model, replacing the conventional current model and simplifying the control algorithm. The sliding mode surface of the sliding mode variable structure control algorithm is constructed using the reference model and the output error of the adjustable model. Through theoretical analysis and simulation models built by MATLAB/Simulink simulation software, the simulation results show that the designed PMLSM speed induction-free control system MRAS speed observer based on the sliding mode variable structure has strong robustness and excellent dynamic static performance. The advantages verified by the new algorithm achieve the experimental purpose of the expected assumptions.
Citation
Mingwei Li, Kailin Lv, Cheng Wen, Qiankai Zhao, Xingqiao Zhao, and Xin Wang, "Sensorless Control of Permanent Magnet Synchronous Linear Motor Based on Sliding Mode Variable Structure MRAS Flux Observation," Progress In Electromagnetics Research Letters, Vol. 101, 89-97, 2021.
doi:10.2528/PIERL21101401
References

1. Huang, S., T. W. Ching, W. Li, et al. "Overview of linear motors for transportation applications," 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), 150-154, IEEE, 2018.
doi:10.1109/ISIE.2018.8433682

2. Wang, H. and J. Leng, "Summary on development of permanent magnet synchronous motor," 2018 Chinese Control And Decision Conference (CCDC), 689-693, IEEE, 2018.
doi:10.1109/CCDC.2018.8407219

3. Liang, B., Y. Wang, and J. Wei, "A compensation method for rotor position estimation of PMSM based on pulsating high frequency injection," 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), 2128-2132, IEEE, 2020.
doi:10.23919/ICEMS50442.2020.9290785

4. Wang, G., R. Liu, N. Zhao, et al. "Enhanced linear ADRC strategy for HF pulse voltage signal injection-based sensorless IPMSM drives," IEEE Transactions on Power Electronics, Vol. 34, No. 1, 514-525, 2018.
doi:10.1109/TPEL.2018.2814056

5. Bin, X., X. Luo, L. Zhu, et al. "Sensorless control of dual three-phase PMSM with high frequency voltage signal injection," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 1-4, IEEE, 2019.

6. Han, X., Q. Teng, and W. Luo, "Model predictive torque control for PMSM driven by three-level inverter based on extended Kalman filter speed observer," 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), 166-170, IEEE, 2018.
doi:10.1109/IRCE.2018.8492971

7. Tang, H., H. Li, and J. Lin, "Research on sensorless control method of PMSM based on a Kalman filter sliding mode observer," 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 290-293, IEEE, 2018.
doi:10.1109/ICMTMA.2018.00077

8. Nicola, M. and C. I. Nicola, "Sensorless control of PMSM using fractional order SMC and extended Kalman observer," 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), 526-532, IEEE, 2021.
doi:10.1109/SSD52085.2021.9429370

9. Cheema, M. A. M., J. E. Fletcher, M. Farshadnia, et al. "Combined speed and direct thrust force control of linear permanent-magnet synchronous motors with sensorless speed estimation using a sliding-mode control with integral action," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3489-3501, 2017.
doi:10.1109/TIE.2017.2652368

10. He, L., F. Wang, and D. Ke, "FPGA-based sliding-mode predictive control for PMSM speed regulation system using an adaptive ultralocal model," IEEE Transactions on Power Electronics, Vol. 36, No. 5, 5784-5793, 2020.
doi:10.1109/TPEL.2020.3028545

11. Wang, H., X. Ge, and Y. C. Liu, "Second-order sliding-mode MRAS observer-based sensorless vector control of linear induction motor drives for medium-low speed maglev applications," IEEE Transactions on Industrial Electronics, Vol. 65, No. 12, 9938-9952, 2018.
doi:10.1109/TIE.2018.2818664

12. Li, Z., S. Zhou, Y. Xiao, et al. "Sensorless vector control of permanent magnet synchronous linear motor based on self-adaptive super-twisting sliding mode controller," IEEE Access, Vol. 7, 44998-45011, 2019.
doi:10.1109/ACCESS.2019.2909308

13. Shi, C. and C. Wang, "Sensorless vector control of three-phase permanent magnet synchronous motor based on model reference adaptive system," 2018 IEEE 4th International Conference on Control Science and Systems Engineering (ICCSSE), 178-182, IEEE, 2018.

14. Narayanan, G., "Stator flux based model reference adaptive observers for rotor position and speed estimation in doubly-fed induction machines," 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-6, IEEE, 2018.

15. Elmorshedy, M. F., W. Xu, Y. Liu, et al. "Sensorless direct thrust control of a linear induction motor based on MRAS," 2019 12th International Symposium on Linear Drives for Industry Applications (LDIA), 1-6, IEEE, 2019.

16. Ni, H., B. Ding, F. Zhao, et al. "Adaptive terminal sliding mode control for permanent magnet linear synchronous motor," 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 1-4, IEEE, 2020.