Vol. 101
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-23
Research on Efficiency Optimization Based on Permanent Magnet Synchronous Linear Motor
By
Progress In Electromagnetics Research Letters, Vol. 101, 147-155, 2021
Abstract
In recent years, permanent magnet synchronous linear motor (PMSLM) has gained tremendous momentum in industry, especially in the high-precision field. This is mainly because it has the advantages of small size, high control precision, reliable operation. However, due to the special structure of linear motor, the control strategy of rotating motor cannot be directly applied to PMSLM. Three control strategies for reducing loss and improving efficiency of PMSLM are proposed in this paper. Firstly, the mathematical model of PMSLM is established and the loss model and efficiency equation are established. Secondly, we adopt the loss model control strategies of id=0, maximum thrust current ratio and direct thrust are used to optimize the efficiency of the motor. Finally, simulation experiments are carried out for the three proposed optimization strategies, and the effects of initial speed and load on motor efficiency are analyzed. The effectiveness of the three loss model control strategies proposed in this paper is fully verified by the simulation results, and it is found that the loss model control strategy of id=0 has the most obvious efficiency improvement.
Citation
Xingqiao Zhao, Cheng Wen, Mingwei Li, Qiankai Zhao, Kailin Lv, and Xin Wang, "Research on Efficiency Optimization Based on Permanent Magnet Synchronous Linear Motor," Progress In Electromagnetics Research Letters, Vol. 101, 147-155, 2021.
doi:10.2528/PIERL21101305
References

1. Huang, W. L., Y. H. Wang, F. C. Kuo, et al. "Integrating time-optimal motion profiles with position control for a high-speed permanent magnet linear synchronous motor planar motion stage," Precision Engineering, Vol. 68, 106-123, 2021.
doi:10.1016/j.precisioneng.2020.11.009

2. Mao, Z., Y. Bai, and F. Meng, "How can China achieve the energy and environmental targets in the 14th and 15th ve-year periods? A perspective of economic restructuring," Science Direct, Vol. 27, 2022-2036, 2021.

3. Qi, Y., N. Stern, J. K. He, et al. "The policy-driven peak and reduction of China's carbon emissions," Advances in Climate Change Research, Vol. 11, No. 2, 65-71, 2020.
doi:10.1016/j.accre.2020.05.008

4. Hu, D., W. Xu, G. Lei, et al. "Design and control optimization of linear induction motor drive for efficiency improvement," 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 1-6, IEEE, 2017.

5. Xu, W., D. Hu, and C. X. Mu, "Novel efficiency optimization control algorithm for single-sided linear induction motor," 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 48-49, IEEE, 2015.
doi:10.1109/ASEMD.2015.7453460

6. Xu, W., D. Hu, G. Lei, et al. "System-level efficiency optimization of a linear induction motor drive system," CES Transactions on Electrical Machines and Systems, Vol. 3, No. 3, 285-291, 2019.
doi:10.30941/CESTEMS.2019.00037

7. Hu, D., W. Xu, G. Lei, et al. "Design and control optimization of linear induction motor drive for efficiency improvement," 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 1-6, IEEE, 2017.

8. Xiong, F. and X. F. Wang, "Parameter calculation of brushless doubly-fed machine based on the genetic algorithm," Advanced Materials Research, Vol. 354, 1261-1264, Trans Tech Publications Ltd., 2012.

9. Xu, W., X. Xiao, G. Du, et al. "Comprehensive efficiency optimization of linear induction motors for urban transit," IEEE Transactions on Vehicular Technology, Vol. 69, No. 1, 131-139, 2019.
doi:10.1109/TVT.2019.2953956

10. Khazaee, A., H. A. Zarchi, and G. A. Markadeh, "Loss model based efficiency optimized control of brushless DC motor drive," ISA Transactions, Vol. 86, 238-248, 2019.
doi:10.1016/j.isatra.2018.10.046

11. Malekpour, M., R. Azizipanah-Abarghooee, and V. Terzija, "Maximum torque per ampere control with direct voltage control for IPMSM drive systems," International Journal of Electrical Power & Energy Systems, Vol. 116, 105509, 2020.
doi:10.1016/j.ijepes.2019.105509

12. Thamizhazhagan, P. and S. Sutha, "Adaptive vector control reference strategy based speed and torque control of Permanent Magnet Synchronous Motor," Microprocessors and Microsystems, Vol. 74, 103007, 2020.
doi:10.1016/j.micpro.2020.103007

13. Guo, Q., C. Zhang, L. Li, et al. "Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system," Applied Energy, Vol. 204, 1317-1332, 2017.
doi:10.1016/j.apenergy.2017.05.023

14. Zhang, Y. and J. Zhu, "Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency," IEEE Transactions on Power Electronics, Vol. 26, No. 1, 235-248, 2010.
doi:10.1109/TPEL.2010.2059047