Vol. 101
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-26
Exotic Band Structures and Exceptional Points for an Electric Lattice with Periodic Modulation in Time
By
Progress In Electromagnetics Research Letters, Vol. 101, 157-164, 2021
Abstract
We study electromagnetic wave propagation in a system that is periodic both in space and in time, namely, a discrete (``lumped'') transmission line with capacitors (``varactors'') that are modulated in time harmonically. These periodicities result in exotic electromagnetic band structures that are periodic in the angular frequency ω and in the phase advance ka of the wave. Depending on the strength of modulation m and the reduced modulation frequency Ω/ω0 (where ω0 is the resonant frequency of a unit cell of the transmission line), this band structure can display frequency or wave vector band gaps, both, or neither. Moreover, minor changes in or the modulation strength can control the aperture or closure of a gap and even transform a k-gap to an ω-gap. Such phase transitions are intimately associated with exceptional or critical points in the (ω, k, Ω, m) space.
Citation
Alexander Gomez Rojas, and Peter Halevi, "Exotic Band Structures and Exceptional Points for an Electric Lattice with Periodic Modulation in Time," Progress In Electromagnetics Research Letters, Vol. 101, 157-164, 2021.
doi:10.2528/PIERL21100806
References

1. Brillouin, L., Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, 255, Dover Publications, 1953.

2. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meady, Photonic Crystals, 2nd Ed., Princeton University Press, 2008.

3. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, 2009.

4. Lai, A., T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, September 2004.
doi:10.1109/MMW.2004.1337766

5. Kozyrev, A. B., H. Kim, A. Karbassi, and D. W. van der Weide, "Wave propagation in nonlinear left-handed transmission line media," Applied Physics Letters, Vol. 87, No. 12, 121109, September 2005.
doi:10.1063/1.2056581

6. Syms, R. R. A., E. Shamonina, V. Kalinin, and L. Solymar, "A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves," Journal of Applied Physics, Vol. 97, No. 6, (064909)1-6, March 2005.
doi:10.1063/1.1850182

7. Gil, I., J. Bonache, M. Gil, J. Garcia-Garcia, F. Martin, and R. Marqes, "Accurate circuit analysis of resonant-type left handed transmission lines with inter-resonator coupling," Journal of Applied Physics, Vol. 100, No. 7, 074908, October 2006.
doi:10.1063/1.2353174

8. Kozyrev, A. B., H. Kim, and D. W. van der Weide, "Parametric amplification in left-handed transmission line media," Applied Physics Letters, Vol. 88, No. 26, 264101, June 2006.
doi:10.1063/1.2214136

9. Algredo-Badillo, U. and P. Halevi, "Negative refraction and focusing in magnetically coupled L-C loaded transmission lines," Journal of Applied Physics, Vol. 102, No. 8, 086104, October 2007.
doi:10.1063/1.2794558

10. Ou, Y. and G. M. Rebeiz, "Lumped-element fully tunable bandstop filters for cognitive radio applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2461-2468, October 2011.
doi:10.1109/TMTT.2011.2160965

11. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 2, 234-243, February 2014.
doi:10.1109/TMTT.2013.2295555

12. Chaudhary, G. and Y. Jeong, "Distributed transmission line negative group delay circuit with improved signal attenuation," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 1, 20-22, January 2014.
doi:10.1109/LMWC.2013.2287246

13. Chaudhary, G. and Y. Jeong, "A design of power divider with negative group delay characteristics," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 6, 394-396, June 2015.
doi:10.1109/LMWC.2015.2421280

14. Zurita-Sanchez, J. R., P. Halevi, and J. C. Cervantes-Gonzalez, "Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t)," Physical Review A, Vol. 79, 053821, May 2009.
doi:10.1103/PhysRevA.79.053821

15. Martinez-Romero, J. S., O. M. Becerra-Fuentes, and P. Halevi, "Temporal photonic crystals with modulations of both permittivity and permeability," Physical Review A, Vol. 93, 063813, June 2016.
doi:10.1103/PhysRevA.93.063813

16. Koutserimpas, T. T. and R. Fleury, "Electromagnetic waves in a time periodic medium with step-varying refractive index," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5300-5307, October 2018.
doi:10.1109/TAP.2018.2858200

17. Martinez-Romero, J. S. and P. Halevi, "Standing waves with infinite group velocity in a temporally periodic medium," Physical Review A, Vol. 96, 063831, December 2017.
doi:10.1103/PhysRevA.96.063831

18. Zurita-Sanchez, J. R. and P. Halevi, "Resonances in the optical response of a slab with time-periodic dielectric function ϵ(t)," Physical Review A, Vol. 81, 053834, May 2010.
doi:10.1103/PhysRevA.81.053834

19. Martinez-Romero, J. S. and P. Halevi, "Parametric resonances in a temporal photonic crystal slab," Physical Review A, Vol. 98, 053852, November 2018.

20. Miller, J. L., "Exceptional points make for exceptional sensors," Physics Today, Vol. 70, No. 10, 23, October 2017.
doi:10.1063/PT.3.3717

21. Hodaei, H., A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, "Enhanced sensitivity at higher-order exceptional points," Nature, Vol. 548, 187-191, November 2017.

22. Chen, W., S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, 192-196, August 2017.
doi:10.1038/nature23281

23. Kazemi, H., M. Y. Nada, F. Capolino, and F. Maddaleno, "Experimental demonstration of exceptional points of degeneracy in linear time periodic systems and exceptional sensitivity," Arxiv.org., Vol. 1908, 08516, September 2020.

24. Miri, M. A. and A. Alu, "Exceptional points in optics and photonics," Science, Vol. 363, No. 6422, January 2019.
doi:10.1126/science.aar7709

25. Morgenthaler, F. R., "Velocity modulation of electromagnetic waves," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 167-172, April 1958.
doi:10.1109/TMTT.1958.1124533

26. Currie, M. R. and R. W. Gould, "Coupled-cavity traveling-wave parametric amplifiers: Part I. Analysis," Proceedings of the IRE, Vol. 48, No. 12, 1960-1973, December 1960.
doi:10.1109/JRPROC.1960.287564

27. Cassedy, E. S. and A. A. Oliner, "Dispersion relations in time-space periodic media: Part I --- Stable interactions," Proceedings of the IEEE, Vol. 51, No. 10, 1342-1359, October 1963.
doi:10.1109/PROC.1963.2566

28. Holberg, D. and K. Kunz, "Parametric properties of fields in a slab of time-varying permittivity," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 2, 183-194, March 1966.
doi:10.1109/TAP.1966.1138637

29. Chamanara, N., S. Taravati, Z.-L. Deck-Leger, and C. Caloz, "Optical isolation based on space-time engineered asymmetric photonic band gaps," Physics Review B, Vol. 96, 155409, October 2017.

30. Taravati, S., N. Chamanara, and C. Caloz, "Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator," Physics Review B, Vol. 96, 165144, October 2017.

31. Chamanara, N., Z.-L. Deck-Leger, C. Caloz, and D. Kalluri, "Unusual electromagnetic modes in space-time-modulated dispersion-engineered media," Physical Review A, Vol. 97, 063829, June 2018.
doi:10.1103/PhysRevA.97.063829

32. Reyes-Ayona, J. R. and P. Halevi, "Observation of genuine wave vector (k or β) gap in a dynamic transmission line and temporal photonic crystals," Applied Physics Letters, Vol. 107, 074101, August 2015.
doi:10.1063/1.4928659

33. Reyes-Ayona, J. R. and P. Halevi, "Electromagnetic wave propagation in an externally modulated low-pass transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3449-3459, November 2016.
doi:10.1109/TMTT.2016.2604319

34. Stearrett, R. and L. Q. English, "Experimental generation of intrinsic localized modes in a discrete electrical transmission line," Journal of Physics D: Applied Physics, Vol. 40, No. 17, 5394-5398, August 2007.
doi:10.1088/0022-3727/40/17/058

35. Sato, M., S. Yasui, M. Kimura, T. Hikihara, and A. J. Sievers, "Management of localized energy in discrete nonlinear transmission lines," EPL (Europhysics Letters), Vol. 80, No. 3, 30002, October 2007.
doi:10.1209/0295-5075/80/30002

36. English, L. Q., F. Palmero, P. Candiani, J. Cuevas, R. Carretero-Gonzalez, P. G. Kevrekidis, and A. J. Sievers, "Generation of localized modes in an electrical lattice using subharmonic driving," Physical Review Letters, Vol. 108, 084101, February 2012.
doi:10.1103/PhysRevLett.108.084101

37. Gomez-Rojas, A. and P. Halevi, "Discrete breathers in an electric lattice with an impurity: Birth, interaction, and death," Physical Review E, Vol. 97, 022225, February 2018.
doi:10.1103/PhysRevE.97.022225