1. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 1995.
2. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.
3. Jin, J.-M., Theory and Computation of Electromagnetic Fields, Wiley, 2010.
4. Jin, J.-M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley, 2014.
5. Chew, W. C., J.-M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
6. Manges, J. B. and Z. J. Cendes, "Tree-cotree decompositions for first-order complete tangential vector finite elements," Int. J. Numer. Methods Eng., Vol. 40, 1667-1685, 1997.
doi:10.1002/(SICI)1097-0207(19970515)40:9<1667::AID-NME133>3.0.CO;2-9
7. Albanese, R. and G. Rubinacci, "Solution of three dimensional eddy current problems by integral and differential methods," IEEE Trans. Magn., Vol. 24, 98-101, Jan. 1998.
doi:10.1109/20.43865
8. Lee, S.-C., J.-F. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing waveguiding structures," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 8, 1897-1905, Aug. 2003.
doi:10.1109/TMTT.2003.815263
9. Badics, Z. and J. Pávó, "Full wave potential formulation with low-frequency stability including ohmic losses," IEEE Trans. Magn., Vol. 51, No. 3, 7402204, Mar. 2015.
doi:10.1109/TMAG.2014.2362114
10. Dyczij-Edlinger, R., G. Peng, and J.-F. Lee, "A fast vector-potential method using tangentially continuous vector finite elements," IEEE Trans. Microw. Theory Techn., Vol. 46, No. 6, 863-868, 1998.
doi:10.1109/22.681214
11. Li, Y.-L., S. Sun, Q. I. Dai, and W. C. Chew, "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4355-4364, Oct. 2016.
doi:10.1109/TAP.2016.2593748
12. Chew, W. C., "Vector potential electromagnetics with generalized gauge for inhomogeneous media: Formulation," Progress In Electromagnetics Research, Vol. 149, 69-84, 2014.
doi:10.2528/PIER14060904
13. Zhao, Y. and W. N. Fu, "A new stable full-wave Maxwell solver for all frequencies," IEEE Trans. Magn., Vol. 53, No. 6, 7200704, Jun. 2017.
14. Yan, S., "All-frequency stable potential-based formulation for electromagnetic modeling and simulation," Proc. IEEE Antennas Propag. Symp., Atlanta, GA, USA, Jul. 2019.
15. Dumbser, M., M. Käser, and E. F. Toro, "An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity," Geophys. J. Int., Vol. 171, 695-717, 2007.
doi:10.1111/j.1365-246X.2007.03427.x
16. Cockburn, B., G. E. Karniadakis, and C.-W. Shu, "The development of discontinuous Galerkin methods," Discontinuous Galerkin Methods: Theory, Computation and Applications (Lecture Notes in Computational Science and Engineering), Vol. 11, 3-50, Springer-Verlag, New York, NY, USA, 2000.
17. Zhang, M. and C.-W. Shu, "An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations," Math. Models Methods Appl. Sci., Vol. 13, No. 3, 395-413, Mar. 2003.
doi:10.1142/S0218202503002568
18. Cockburn, B. and C. W. Shu, "Runge-Kutta discontinuous Galerkin methods for convection dominated problems," J. Sci. Comput., Vol. 16, 173-261, 2001.
doi:10.1023/A:1012873910884
19. Cockburn, B. and C.-W. Shu, "The local discontinuous Galerkin method for time-dependent convection-diffusion systems," SIAM J. Numer. Anal., Vol. 35, 2440-2463, 1998.
doi:10.1137/S0036142997316712
20. Hesthaven, J. S. and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, 2008.
21. Descombes, S., C. Durochat, S. Lanteri, L. Moya, C. Scheid, and J. Viquerat, "Recent advances on a DGTD method for time-domain electromagnetics," Photonics and Nanostructures - Fundamentals and Applications, Vol. 11, 291-302, 2013.
doi:10.1016/j.photonics.2013.06.005
22. Lu, T., P. W. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions," J. Comput. Physics, Vol. 200, No. 2, 549-580, Nov. 2004.
doi:10.1016/j.jcp.2004.02.022
23. Gedney, S. D., C. Luo, J. A. Roden, R. D. Crawford, B. Guernsey, J. A. Miller, T. Kramer, and E. W. Lucas, "The discontinuous Galerkin finite-element time-domain method solution of Maxwell's equations," Applied Comput. Electromag. Society J., Vol. 24, No. 2, 129-142, Apr. 2009.
24. Xiao, T. and Q. H. Liu, "Three-dimensional unstructured-grid discontinuous Galerkin method for Maxwell's equations with well-posed perfectly matched layer," Microwave Opt. Technol. Lett., Vol. 46, No. 5, 459-463, 2005.
doi:10.1002/mop.21016
25. Chen, J., Q. H. Liu, M. Chai, and J. A. Mix, "A non-spurious 3-D vector discontinuous Galerkin finite-element time-domain method," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 1, 1-3, Jan. 2010.
doi:10.1109/LMWC.2009.2035941
26. Tobón, L. E., Q. Ren, and Q. H. Liu, "A new efficient 3D discontinuous Galerkin time domain (DGTD) method for large and multiscale electromagnetic simulations," J. Computat. Phys., Vol. 283, 374-387, Feb. 2015.
doi:10.1016/j.jcp.2014.12.008
27. Li, P. and L. J. Jiang, "A hybrid electromagnetics-circuit simulation method exploiting discontinuous Galerkin finite element time domain method," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 3, 113-115, Mar. 2013.
doi:10.1109/LMWC.2013.2246149
28. Li, P., Y. F. Shi, L. J. Jiang, and H. Bağci, "A hybrid time-domain discontinuous Galerkin-boundary integral method for electromagnetic scattering analysis," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2816-2841, May 2014.
29. Alvarez, J., L. D. Angulo, M. F. Pantoja, A. R. Bretones, and S. G. Garcia, "Source and boundary implementation in vector and scalar DGTD," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1997-2003, Jun. 2010.
doi:10.1109/TAP.2010.2046857
30. Alvarez, J., L. D. Angulo, A. R. Bretones, and S. G. Garcia, "A spurious-free discontinuous Galerkin time-domain method for the accurate modeling of microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 8, 2359-2369, Aug. 2012.
doi:10.1109/TMTT.2012.2202683
31. Angulo, L. D., J. Alvarez, M. F. Pantoja, S. G. Garcia, and A. R. Bretones, "Discontinuous Galerkin time domain methods in computational electrodynamics: State of the art," FERMAT: Forum for Electromagnetic Research Methods and Application Technologies, Vol. 10, 1-24, Aug. 2015.
32. Chen, G., L. Zhao, W. Yu, S. Yan, K. Zhang, and J.-M. Jin, "A general scheme for the DGTD modeling and S-parameter extraction of inhomogeneous waveports," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 4, 1701-1712, Apr. 2018.
doi:10.1109/TMTT.2017.2785800
33. Yan, S., A. D. Greenwood, and J.-M. Jin, "Modeling of plasma formation during high-power microwave breakdown in air using the discontinuous Galerkin time-domain method (invited paper)," IEEE J. Multiscale and Multiphys. Comput. Techn., Vol. 1, 2-13, Jun. 2016.
doi:10.1109/JMMCT.2016.2559515
34. Yan, S., A. D. Greenwood, and J.-M. Jin, "Simulation of high-power microwave air breakdown modeled by a coupled Maxwell-Euler system with a non-Maxwellian EEDF," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 1882-1893, Apr. 2018.
doi:10.1109/TAP.2018.2804482
35. Chang, C.-P., G. Chen, S. Yan, and J.-M. Jin, "Waveport modeling for the DGTD simulation of electromagnetic devices," Int. J. Numer. Model. El., 1-9, Feb. 2017.
36. Klöckner, A., T. Warburton, J. Bridge, and J. S. Hesthaven, "Nodal discontinuous Galerkin methods on graphics processors," J. Comput. Phys., Vol. 228, No. 21, 7863-7882, 2009.
doi:10.1016/j.jcp.2009.06.041
37. Baumann, C. E. and J. T. Oden, "A discontinuous hp finite element method for convection-diffusion problems," Comput. Methods Appl. Mech. Engrg., Vol. 175, 311-341, 1999.
doi:10.1016/S0045-7825(98)00359-4
38. Yan, S., C.-P. Lin, R. R. Arslanbekov, V. I. Kolobov, and J.-M. Jin, "A discontinuous Galerkin timedomain method with dynamically adaptive Cartesian meshes for computational electromagnetics," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3122-3133, Jun. 2017.
doi:10.1109/TAP.2017.2689066
39. Yan, S. and J.-M. Jin, "A dynamic p-adaptive DGTD algorithm for electromagnetic and multiphysics simulations," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2446-2459, May 2017.
doi:10.1109/TAP.2017.2676724
40. Arnold, D. N., F. Brezzi, B. Cockburn, and L. D. Marini, "Unified analysis of discontinuous Galerkin methods for elliptic problems," SIAM J. Numer. Anal., Vol. 39, No. 5, 1749-1779, 2002.
doi:10.1137/S0036142901384162
41. Tian, C.-Y., Y. Shi, and C. H. Chan, "Interior penalty discontinuous Galerkin time-domain method based on wave equation for 3-D electromagnetic modeling," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7174-7184, 2017.
doi:10.1109/TAP.2017.2756678
42. Tian, C.-Y., Y. Shi, and C. H. Chan, "An improved vector wave equation-based discontinuous Galerkin time domain method and its hybridization with Maxwell's equation-based discontinuous Galerkin time domain method," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6170-6178, 2018.
doi:10.1109/TAP.2018.2866992
43. Yang, Q., Y. Shi, Z. G. Ban, and S. C. Zhu, "A nodal discontinuous Galerkin time-domain method based on wave equation," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 7, 1083-1087, 2020.
doi:10.1109/LAWP.2020.2988916
44. Coulomb, J. L., "Finite element three dimensional magnetic field computation," IEEE Trans. Magn., Vol. 17, 3241-3246, 1981.
doi:10.1109/TMAG.1981.1061587
45. Demerdash, N. A. and R. Wang, "Theoretical and numerical difficulties in 3-D vector potential methods in finite element magnetostatic computations," IEEE Trans. Magn., Vol. 26, 1656-1658, 1990.
doi:10.1109/20.104481
46. Yan, S. and J.-M. Jin, "A continuity-preserving and divergence-cleaning algorithm based on purely and damped hyperbolic Maxwell equations in inhomogeneous media," J. Comput. Phys., Vol. 334, 392-418, Apr. 2017.
doi:10.1016/j.jcp.2017.01.012