Vol. 106
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-22
A Continuous-Discontinuous Galerkin Method for Electromagnetic Simulations Based on an All-Frequency Stable Formulation
By
Progress In Electromagnetics Research M, Vol. 106, 153-165, 2021
Abstract
In this paper, a potential-based partial-differential formulation, called the all-frequency stable formulation, is presented for the accurate and robust simulation of electromagnetic problems at all frequencies. Due to its stability from (near) dc to microwave frequencies, this formulation can be applied to simulate wide-band and multiscale problems without encountering the infamous low-frequency breakdown issue or applying basis function decompositions such as the tree-cotree splitting technique. To provide both efficient and flexible numerical solutions to the electromagnetic formulation, a mixed continuous-discontinuous Galerkin (CDG) method is proposed and implemented. In regions with homogeneous media, the continuous Galerkin method is employed to avoid the introduction of duplicated degrees of freedom (DoFs) on the elemental interfaces, while on the interfaces of two different media, the discontinuous Galerkin method is applied to permit the jump of the normal components of the electromagnetic fields. Numerical examples are provided to validate and demonstrate the proposed numerical solver for problems in a wide electromagnetic spectrum.
Citation
Su Yan, "A Continuous-Discontinuous Galerkin Method for Electromagnetic Simulations Based on an All-Frequency Stable Formulation," Progress In Electromagnetics Research M, Vol. 106, 153-165, 2021.
doi:10.2528/PIERM21100412
References

1. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 1995.

2. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.

3. Jin, J.-M., Theory and Computation of Electromagnetic Fields, Wiley, 2010.

4. Jin, J.-M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley, 2014.

5. Chew, W. C., J.-M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

6. Manges, J. B. and Z. J. Cendes, "Tree-cotree decompositions for first-order complete tangential vector finite elements," Int. J. Numer. Methods Eng., Vol. 40, 1667-1685, 1997.
doi:10.1002/(SICI)1097-0207(19970515)40:9<1667::AID-NME133>3.0.CO;2-9

7. Albanese, R. and G. Rubinacci, "Solution of three dimensional eddy current problems by integral and differential methods," IEEE Trans. Magn., Vol. 24, 98-101, Jan. 1998.
doi:10.1109/20.43865

8. Lee, S.-C., J.-F. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing waveguiding structures," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 8, 1897-1905, Aug. 2003.
doi:10.1109/TMTT.2003.815263

9. Badics, Z. and J. Pávó, "Full wave potential formulation with low-frequency stability including ohmic losses," IEEE Trans. Magn., Vol. 51, No. 3, 7402204, Mar. 2015.
doi:10.1109/TMAG.2014.2362114

10. Dyczij-Edlinger, R., G. Peng, and J.-F. Lee, "A fast vector-potential method using tangentially continuous vector finite elements," IEEE Trans. Microw. Theory Techn., Vol. 46, No. 6, 863-868, 1998.
doi:10.1109/22.681214

11. Li, Y.-L., S. Sun, Q. I. Dai, and W. C. Chew, "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4355-4364, Oct. 2016.
doi:10.1109/TAP.2016.2593748

12. Chew, W. C., "Vector potential electromagnetics with generalized gauge for inhomogeneous media: Formulation," Progress In Electromagnetics Research, Vol. 149, 69-84, 2014.
doi:10.2528/PIER14060904

13. Zhao, Y. and W. N. Fu, "A new stable full-wave Maxwell solver for all frequencies," IEEE Trans. Magn., Vol. 53, No. 6, 7200704, Jun. 2017.

14. Yan, S., "All-frequency stable potential-based formulation for electromagnetic modeling and simulation," Proc. IEEE Antennas Propag. Symp., Atlanta, GA, USA, Jul. 2019.

15. Dumbser, M., M. Käser, and E. F. Toro, "An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity," Geophys. J. Int., Vol. 171, 695-717, 2007.
doi:10.1111/j.1365-246X.2007.03427.x

16. Cockburn, B., G. E. Karniadakis, and C.-W. Shu, "The development of discontinuous Galerkin methods," Discontinuous Galerkin Methods: Theory, Computation and Applications (Lecture Notes in Computational Science and Engineering), Vol. 11, 3-50, Springer-Verlag, New York, NY, USA, 2000.

17. Zhang, M. and C.-W. Shu, "An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations," Math. Models Methods Appl. Sci., Vol. 13, No. 3, 395-413, Mar. 2003.
doi:10.1142/S0218202503002568

18. Cockburn, B. and C. W. Shu, "Runge-Kutta discontinuous Galerkin methods for convection dominated problems," J. Sci. Comput., Vol. 16, 173-261, 2001.
doi:10.1023/A:1012873910884

19. Cockburn, B. and C.-W. Shu, "The local discontinuous Galerkin method for time-dependent convection-diffusion systems," SIAM J. Numer. Anal., Vol. 35, 2440-2463, 1998.
doi:10.1137/S0036142997316712

20. Hesthaven, J. S. and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, 2008.

21. Descombes, S., C. Durochat, S. Lanteri, L. Moya, C. Scheid, and J. Viquerat, "Recent advances on a DGTD method for time-domain electromagnetics," Photonics and Nanostructures - Fundamentals and Applications, Vol. 11, 291-302, 2013.
doi:10.1016/j.photonics.2013.06.005

22. Lu, T., P. W. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions," J. Comput. Physics, Vol. 200, No. 2, 549-580, Nov. 2004.
doi:10.1016/j.jcp.2004.02.022

23. Gedney, S. D., C. Luo, J. A. Roden, R. D. Crawford, B. Guernsey, J. A. Miller, T. Kramer, and E. W. Lucas, "The discontinuous Galerkin finite-element time-domain method solution of Maxwell's equations," Applied Comput. Electromag. Society J., Vol. 24, No. 2, 129-142, Apr. 2009.

24. Xiao, T. and Q. H. Liu, "Three-dimensional unstructured-grid discontinuous Galerkin method for Maxwell's equations with well-posed perfectly matched layer," Microwave Opt. Technol. Lett., Vol. 46, No. 5, 459-463, 2005.
doi:10.1002/mop.21016

25. Chen, J., Q. H. Liu, M. Chai, and J. A. Mix, "A non-spurious 3-D vector discontinuous Galerkin finite-element time-domain method," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 1, 1-3, Jan. 2010.
doi:10.1109/LMWC.2009.2035941

26. Tobón, L. E., Q. Ren, and Q. H. Liu, "A new efficient 3D discontinuous Galerkin time domain (DGTD) method for large and multiscale electromagnetic simulations," J. Computat. Phys., Vol. 283, 374-387, Feb. 2015.
doi:10.1016/j.jcp.2014.12.008

27. Li, P. and L. J. Jiang, "A hybrid electromagnetics-circuit simulation method exploiting discontinuous Galerkin finite element time domain method," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 3, 113-115, Mar. 2013.
doi:10.1109/LMWC.2013.2246149

28. Li, P., Y. F. Shi, L. J. Jiang, and H. Bağci, "A hybrid time-domain discontinuous Galerkin-boundary integral method for electromagnetic scattering analysis," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2816-2841, May 2014.

29. Alvarez, J., L. D. Angulo, M. F. Pantoja, A. R. Bretones, and S. G. Garcia, "Source and boundary implementation in vector and scalar DGTD," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1997-2003, Jun. 2010.
doi:10.1109/TAP.2010.2046857

30. Alvarez, J., L. D. Angulo, A. R. Bretones, and S. G. Garcia, "A spurious-free discontinuous Galerkin time-domain method for the accurate modeling of microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 8, 2359-2369, Aug. 2012.
doi:10.1109/TMTT.2012.2202683

31. Angulo, L. D., J. Alvarez, M. F. Pantoja, S. G. Garcia, and A. R. Bretones, "Discontinuous Galerkin time domain methods in computational electrodynamics: State of the art," FERMAT: Forum for Electromagnetic Research Methods and Application Technologies, Vol. 10, 1-24, Aug. 2015.

32. Chen, G., L. Zhao, W. Yu, S. Yan, K. Zhang, and J.-M. Jin, "A general scheme for the DGTD modeling and S-parameter extraction of inhomogeneous waveports," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 4, 1701-1712, Apr. 2018.
doi:10.1109/TMTT.2017.2785800

33. Yan, S., A. D. Greenwood, and J.-M. Jin, "Modeling of plasma formation during high-power microwave breakdown in air using the discontinuous Galerkin time-domain method (invited paper)," IEEE J. Multiscale and Multiphys. Comput. Techn., Vol. 1, 2-13, Jun. 2016.
doi:10.1109/JMMCT.2016.2559515

34. Yan, S., A. D. Greenwood, and J.-M. Jin, "Simulation of high-power microwave air breakdown modeled by a coupled Maxwell-Euler system with a non-Maxwellian EEDF," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 1882-1893, Apr. 2018.
doi:10.1109/TAP.2018.2804482

35. Chang, C.-P., G. Chen, S. Yan, and J.-M. Jin, "Waveport modeling for the DGTD simulation of electromagnetic devices," Int. J. Numer. Model. El., 1-9, Feb. 2017.

36. Klöckner, A., T. Warburton, J. Bridge, and J. S. Hesthaven, "Nodal discontinuous Galerkin methods on graphics processors," J. Comput. Phys., Vol. 228, No. 21, 7863-7882, 2009.
doi:10.1016/j.jcp.2009.06.041

37. Baumann, C. E. and J. T. Oden, "A discontinuous hp finite element method for convection-diffusion problems," Comput. Methods Appl. Mech. Engrg., Vol. 175, 311-341, 1999.
doi:10.1016/S0045-7825(98)00359-4

38. Yan, S., C.-P. Lin, R. R. Arslanbekov, V. I. Kolobov, and J.-M. Jin, "A discontinuous Galerkin timedomain method with dynamically adaptive Cartesian meshes for computational electromagnetics," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3122-3133, Jun. 2017.
doi:10.1109/TAP.2017.2689066

39. Yan, S. and J.-M. Jin, "A dynamic p-adaptive DGTD algorithm for electromagnetic and multiphysics simulations," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2446-2459, May 2017.
doi:10.1109/TAP.2017.2676724

40. Arnold, D. N., F. Brezzi, B. Cockburn, and L. D. Marini, "Unified analysis of discontinuous Galerkin methods for elliptic problems," SIAM J. Numer. Anal., Vol. 39, No. 5, 1749-1779, 2002.
doi:10.1137/S0036142901384162

41. Tian, C.-Y., Y. Shi, and C. H. Chan, "Interior penalty discontinuous Galerkin time-domain method based on wave equation for 3-D electromagnetic modeling," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7174-7184, 2017.
doi:10.1109/TAP.2017.2756678

42. Tian, C.-Y., Y. Shi, and C. H. Chan, "An improved vector wave equation-based discontinuous Galerkin time domain method and its hybridization with Maxwell's equation-based discontinuous Galerkin time domain method," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6170-6178, 2018.
doi:10.1109/TAP.2018.2866992

43. Yang, Q., Y. Shi, Z. G. Ban, and S. C. Zhu, "A nodal discontinuous Galerkin time-domain method based on wave equation," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 7, 1083-1087, 2020.
doi:10.1109/LAWP.2020.2988916

44. Coulomb, J. L., "Finite element three dimensional magnetic field computation," IEEE Trans. Magn., Vol. 17, 3241-3246, 1981.
doi:10.1109/TMAG.1981.1061587

45. Demerdash, N. A. and R. Wang, "Theoretical and numerical difficulties in 3-D vector potential methods in finite element magnetostatic computations," IEEE Trans. Magn., Vol. 26, 1656-1658, 1990.
doi:10.1109/20.104481

46. Yan, S. and J.-M. Jin, "A continuity-preserving and divergence-cleaning algorithm based on purely and damped hyperbolic Maxwell equations in inhomogeneous media," J. Comput. Phys., Vol. 334, 392-418, Apr. 2017.
doi:10.1016/j.jcp.2017.01.012