Vol. 101
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-11
Dielectric and Plasmonic Hybrid Dimer Pair: Broadband Reversal of Optical Binding Force
By
Progress In Electromagnetics Research Letters, Vol. 101, 99-105, 2021
Abstract
Controlled mutual attraction or repulsion, by the aid of light beam, between two or more particles, is regarded as the reversal of optical binding force. It has emerged as an important tool in the area of optical manipulation, facilitating clustering or aggregating between homodimer and heterodimer arrangements of particles. Despite a vast array of works being done in this area, dielectric-plasmonic hybrid dimer pair has not received any attention yet. To the best of our knowledge, in this letter, we have provided the very first proposal of a generic way to attain the controlled broadband reversal of optical binding force between dielectric and plasmonic hybrid dimer pair. A simple optical setup consisting of a plasmonic substrate placed underneath the hybrid dimer pair has been proposed, where the reversal of optical binding force can be attained by the incidence of a non-structured laser beam in both near- and far-field regions. Furthermore, we have demonstrated that the magnitude of this binding force can be enhanced, simply by altering the angle of incidence of the source of illumination. The force reversal has been attained based on two physical phenomena - mutual attraction and repulsion between the charges formed within the hybrid pair and the reversal of current density in the plasmonic object.
Citation
Md. Saadman Zia, Md. Mahadul Islam, Masudur Rahim, Tapesh Bhowmick, Md. Mizanur Rahman, and M. R. C. Mahdy, "Dielectric and Plasmonic Hybrid Dimer Pair: Broadband Reversal of Optical Binding Force," Progress In Electromagnetics Research Letters, Vol. 101, 99-105, 2021.
doi:10.2528/PIERL21092601
References

1. Burns, M. M., J.-M. Fournier, and J. A. Golovchenko, "Optical binding," Physical Review Letters, Vol. 63, No. 12, 1233, 1989.
doi:10.1103/PhysRevLett.63.1233

2. Neuman, K. C., et al., "Characterization of photodamage to Escherichia coli in optical traps," Biophysical Journal, Vol. 77, No. 5, 2856-2863, 1999.
doi:10.1016/S0006-3495(99)77117-1

3. Demergis, V. and E.-L. Florin, "Ultrastrong optical binding of metallic nanoparticles," Nano Letters, Vol. 12, No. 11, 5756-5760, 2012.
doi:10.1021/nl303035p

4. Brzobohaty, O., et al., "Experimental and theoretical determination of optical binding forces," Optics Express, Vol. 18, No. 24, 25389-25402, 2010.
doi:10.1364/OE.18.025389

5. Mahdy, M. R. C., et al., "Substrate and Fano resonance effects on the reversal of optical binding force between plasmonic cube dimers," Scientific Reports, Vol. 7, No. 1, 1-11, 2017.
doi:10.1038/s41598-017-07158-z

6. Mahdy, M. R. C., et al., "Plasmonic spherical heterodimers, reversal of optical binding force based on the forced breaking of symmetry," Scientific Reports, Vol. 8, No. 1, 1-12, 2018.
doi:10.1038/s41598-018-21498-4

7. Chaumet, P. C. and M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface," Physical Review B, Vol. 64, No. 3, 035422, 2001.
doi:10.1103/PhysRevB.64.035422

8. Qiu, C.-W., et al., "Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams," Light, Science & Applications, Vol. 4, No. 4, e278-e278, 2015.
doi:10.1038/lsa.2015.51

9. Zhu, T., et al., "Optical pulling using evanescent mode in sub-wavelength channels," Optics Express, Vol. 24, No. 16, 18436-18444, 2016.
doi:10.1364/OE.24.018436

10. Ng, J., R. Tang, and C. T. Chan, "Electrodynamics study of plasmonic bonding and antibonding forces in a bisphere," Physical Review B, Vol. 77, No. 19, 195407, 2008.
doi:10.1103/PhysRevB.77.195407

11. Miljkovic, V. D., et al., "Optical forces in plasmonic nanoparticle dimers," The Journal of Physical Chemistry C, Vol. 114, No. 16, 7472-7479, 2010.
doi:10.1021/jp911371r

12. Gao, D., et al., "Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles," Physical Review A, Vol. 96, No. 4, 043826, 2017.
doi:10.1103/PhysRevA.96.043826

13. Rahaman, M. H. and B. A. Kemp, "Negative force on free carriers in positive index nanoparticles," APL Photonics, Vol. 2, No. 10, 101301, 2017.
doi:10.1063/1.4991567

14. Mahdy, M. R. C., et al., "Dielectric or plasmonic Mie object at air-liquid interface, The transferred and the traveling momenta of photon," Chinese Physics B, Vol. 29, No. 1, 014211, 2020.
doi:10.1088/1674-1056/ab5efa

15. Kemp, B. A., J. A. Kong, and T. M. Grzegorczyk, "Reversal of wave momentum in isotropic left-handed media," Physical Review A, Vol. 75, No. 5, 053810, 2007.
doi:10.1103/PhysRevA.75.053810

16. Jones, C., B. A. Kemp, and C. J. Sheppard, "Enhanced radiation pressure reversal on free carriers in nanoparticles and polarization dependence in the Rayleigh regime," Optical Engineering, Vol. 60, No. 2, 027104, 2021.
doi:10.1117/1.OE.60.2.027104

17. Kriesch, A., "Oblique-incidence excitation of surface plasmon polaritons on small metal wires," arXiv preprint arXiv:0906.2089, 2009.

18. Gao, D., et al., "Enhanced spin Hall effect of light in spheres with dual symmetry," Laser & Photonics Reviews, Vol. 12, No. 11, 1800130, 2018.
doi:10.1002/lpor.201800130