Vol. 101
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-06
Design of Full-360° Reflection-Type Phase Shifter Using Trans-Directional Coupler with Multi-Resonance Loads
By
Progress In Electromagnetics Research Letters, Vol. 101, 63-70, 2021
Abstract
In this paper, a full-360° reflection-type phase shifter (RTPS) using a trans-directional (TRD) coupler with multi-resonance loads is presented. It features the characteristics of wide bandwidth, small size, and wide phase shifts with a compact structure and inherent DC blocking. Influences of the multi-resonance loads on the phase shifts and insertion losses of the RTPS are analyzed, and design procedures are given for guidance. For validation, a prototype is designed at 2 GHz. The overall size is 0.56λg × 0.17λg. Measured results show a bandwidth of 20% under the criterion of more than 10-dB return loss. Meanwhile, a relative phase variation of 425° with a maximum insertion loss of 3.6 dB is achieved when the varactor capacitance is varied among 0.35 pF~3.2 pF.
Citation
Hongmei Liu, Xuejiao Wang, Tielin Zhang, Shao-Jun Fang, and Zhongbao Wang, "Design of Full-360° Reflection-Type Phase Shifter Using Trans-Directional Coupler with Multi-Resonance Loads," Progress In Electromagnetics Research Letters, Vol. 101, 63-70, 2021.
doi:10.2528/PIERL21091802
References

1. Yang, B., X. Chen, J. Chu, T. Mitani, and N. Shinohara, "A 5.8-GHz phased array system using power-variable phase-controlled magnetrons for wireless power transfer," IEEE Trans. Microw. Theory Tech., Vol. 68, No. 11, 4951-4959, Nov. 2020.
doi:10.1109/TMTT.2020.3007187

2. Ren, H., P. Li, Y. Gu, and B. Arigong, "Phase shifter-relaxed and control-relaxed continuous steering multiple beamforming 4 x 4 butler matrix phased array," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 67, No. 12, 5031-5039, Dec. 2020.
doi:10.1109/TCSI.2020.3009215

3. Yang, X. and J. Lin, "A digitally controlled constant envelope phase-shift modulator for low-power broad-band wireless applications," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 1, 96-105, Jan. 2006.
doi:10.1109/TMTT.2005.861669

4. Sobhy, E. A. and S. Hoyos, "A multiphase multipath technique with digital phase shifters for harmonic distortion cancellation," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 57, No. 12, 921-925, Dec. 2010.
doi:10.1109/TCSII.2010.2083090

5. Bourtoutian, R. and P. Ferrari, "Tapered distributed analogue tunable phase shifter with low insertion and return loss," IET Electron. Lett., Vol. 41, No. 15, 852-854, Jul. 2005.
doi:10.1049/el:20051810

6. Anand, P., S. Sharma, D. Sood, and C. C. Tripathi, "Design of compact reconfigurable switched line microstrip phase shifters for phased array antenna," Proc. Emerg. Technol. Trends Electron. Commun. Netw., Vol. 19, 1-3, Gujarat, India, Dec. 2012.

7. Singh, A. and M. K. Mandal, "Electronically tunable reflection type phase shifters," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 67, No. 3, 425-429, Mar. 2020.
doi:10.1109/TCSII.2019.2921036

8. Lin, C., S. Chang, C. Chang, and Y. Shu, "Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1862-1868, Sept. 2007.
doi:10.1109/TMTT.2007.903346

9. Lin, C., S. Chang, and W. Hsiao, "A full-360◦ reflection-type phase shifter with constant insertion loss," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 2, 106-108, Feb. 2008.
doi:10.1109/LMWC.2007.915094

10. Burdin, F., Z. Iskandar, F. Podevin, and P. Ferrari, "Design of compact reflection-type phase shifters with high figure-of-merit," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 6, 1883-1893, Jun. 2015.
doi:10.1109/TMTT.2015.2428242

11. Li, T. and H. Wang, "A millimeter-wave fully integrated passive reflection-type phase shifter with transformer-based multi-resonance loads for 360◦ phase shifting," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 65, No. 4, 1406-1419, Apr. 2018.
doi:10.1109/TCSI.2017.2748078

12. Vilenskiy, A. R., M. N. Makurin, E. I. Poshisholina, and C. Lee, "Design technique for varactor analog phase shifters with equalized losses," Progress In Electromagnetics Research C, Vol. 86, 1-16, 2018.
doi:10.2528/PIERC18060504

13. Abbosh, A. M., "Compact tunable reflection phase shifters using short section of coupled lines," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2465-2472, Aug. 2012.
doi:10.1109/TMTT.2012.2198232

14. Liu, W. J., S. Y. Zheng, Y. M. Pan, Y. X. Li, and Y. L. Long, "A wideband tunable reflection-type phase shifter with wide relative phase shift," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 64, No. 12, 1442-1446, Dec. 2017.
doi:10.1109/TCSII.2017.2650946

15. Venter, J. J. P., T. Stander, and P. Ferrari, "X-band reflection-type phase shifters using coupled-line couplers on single-layer RF PCB," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 9, 807-809, Sept. 2018.
doi:10.1109/LMWC.2018.2853562

16. Shie, C. I., J. C. Cheng, S. C. Chou, et al. "Trans-directional coupled-line couplers implemented by periodical shunt capacitors," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 2981-2987, Dec. 2009.
doi:10.1109/TMTT.2009.2034219

17. Sychev, A. N., I. M. Dobush, N. Y. Rudyi, and S. M. Struchkov, "Analog phase shifter of X-band implemented with novel trans-directional coupled-line coupler," Proc. 48th Eur. Microw. Conf. (EuMC), 811-814, 2018.

18. Sychev, A. N., N. Y. Rudyi, I. M. Dobush, and K. K. Zharov, "A phase shifter based on trans-directional coupler with DC isolation of RF-path and control circuit," Proc. APEIE, 380-383, Novosibirsk, Russia, Oct. 2018.

19. Occello, O., L. Tiague, M. Margalef-Rovira, L. Vincent, F. Ndagijimana, and P. Ferrari, "High-performance compact reflection-type phase shifter operating at 2 GHz using a transdirectional coupler," Proc. 50th Eur. Microw. Conf. (EuMC), 550-553, 2021.

20. Liu, H., S. Fang, Z. Wang, and T. Shao, "Coupled line trans-directional coupler with improved power distribution and phase performance," Proc. IEEE Int. Symp. Radio-Frequency Integr. Technol. (RFIT), 126-128, Aug. 2017.