Vol. 101
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-06
Design of Polarization Insensitive Frequency Selective Surface for Electromagnetic Shielding Application
By
Progress In Electromagnetics Research Letters, Vol. 101, 71-78, 2021
Abstract
In this paper, a low profile Frequency Selective Surface is presented, for obtaining electromagnetic shielding in four distinct frequency regions. The designed structure consists of three rectangular strips Resonators, Jerusalem cross in the top side and diagonal metallic strips on bottom side of the dielectric. The proposed structure provides electromagnetic shielding at 9.9 GHz, 12.3 GHz, 13.5 GHz, and 16.4 GHz frequency regions. Besides these frequency regions, we also obtain five transparent windows suitable for telemetry application. The prototype of the proposed structure is fabricated. It is observed that the measured results are nearly similar to simulated results because of minor fabrication errors. Furthermore the proposed low profile structure can be deployed for applications like radoms, spatial filters, antenna reflectors and RCS reductions.
Citation
Surya Durga Padmaja Bikkuri, and Bhavan S. Naga Kishore, "Design of Polarization Insensitive Frequency Selective Surface for Electromagnetic Shielding Application," Progress In Electromagnetics Research Letters, Vol. 101, 71-78, 2021.
doi:10.2528/PIERL21091506
References

1. Chen, H. Y. and Y. Tao, "Bandwidth enhancement of a U-slot patch antenna using dual- band frequency-selective surface with double rectangular ring elements," Microwave and Optical Technology Letters, Vol. 53, No. 7, 1547-1553, 2011.
doi:10.1002/mop.26066

2. Ghosh, S. and K. V. Srivastava, "Broadband polarization-insensitive tunable frequency selective surface for wideband shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 166-172, 2017.
doi:10.1109/TEMC.2017.2706359

3. Li, J., Q. Zeng, R. Liu, and T. A. Denidni, "A compact dual-band beam-sweeping antenna based on active frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1542-1549, 2017.
doi:10.1109/TAP.2017.2669719

4. Sen, G., T. Mandal, S. Majumdar, S. Mahato, S. Mondal, and P. P. Sarkar, "Design of a wide band Frequency Selective Surface (FSS) for multiband operation of reflector antenna," 5th International Conference on Computers and Devices for Communication (CODEC), 1-3, December 2012.

5. Romeu, J. and Y. R. Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329

6. Liu, N., X. Sheng, C. Zhang, and D. Guo, "Design of frequency selective surface structure with high angular stability for radome application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 138-141, 2017.
doi:10.1109/LAWP.2017.2778078

7. Jin, C., Q. Lv, B. Zhang, J. Liu, S. An, Z. S. He, and Z. Shen, "Ultra-wide-angle bandpass frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5673-5681, 2021.
doi:10.1109/TAP.2021.3061144

8. Kundu, S., "A compact uniplanar ultra-wideband frequency selective surface for antenna gain improvement and ground penetrating radar application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 10, e22363, 2020.
doi:10.1002/mmce.22363

9. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 2, e22505, 2021.
doi:10.1002/mmce.22505

10. Das, P., K. Mandal, and A. Lalbakhsh, "Single-layer polarization-insensitive frequency selective surface for beam recon gurability of monopole antennas," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 1, 86-102, 2020.
doi:10.1080/09205071.2019.1688693

11. Sivasamy, R., M. Kanagasabai, S. Baisakhiya, R. Natarajan, J. K. Pakkathillam, and P. S. Kumar, "A novel shield for GSM 1800MHz band using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 38, 193-199, 2013.
doi:10.2528/PIERL13022206

12. Yu, Z. and C. Wang, "Bandpass frequency selective surface based on square waveguide structure using 3D printing technology," Progress In Electromagnetics Research M, Vol. 99, 165-175, 2021.
doi:10.2528/PIERM20080803

13. Bilal, M., R. Saleem, Q. H. Abbasi, B. Kasi, and M. F. Shaque, "Miniaturized and Flexible FSS-based EM shields for conformal applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1703-1710, 2020.
doi:10.1109/TEMC.2019.2961891

14. Ghosh, J. and D. Mitra, "Restoration of antenna performance in the vicinity of metallic cylinder in implantable scenario," IET Microwaves, Antennas & Propagation, Vol. 14, No. 12, 1440-1445, 2020.
doi:10.1049/iet-map.2019.0519

15. Lee, I. G. and I. P. Hong, "3D frequency selective surface for stable angle of incidence," Electronics Letters, Vol. 50, No. 6, 423-424, 2014.
doi:10.1049/el.2014.0053

16. Zheng, G., C. Zhong, L. Tang, P. Luo, and Y. Wang, "Study on ultra-wide stopband miniaturized multilayer frequency selective surface with capacitive loading," Progress In Electromagnetics Research Letters, Vol. 94, 117-123, 2020.
doi:10.2528/PIERL19111201

17. Shaik, V. and K. Shambavi, "Design of dodecagon unit cell shape based three layered frequency selective surfaces for X band reflection," Progress In Electromagnetics Research M, Vol. 75, 103-111, 2018.
doi:10.2528/PIERM18070207

18. Yin, W., H. Zhang, T. Zhong, and X. Min, "A novel compact dual-band frequency selective surface for GSM shielding by utilizing a 2.5-dimensional structure," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, 2057-2060, 2018.
doi:10.1109/TEMC.2018.2790584

19. Fallah, M., A. Ghayekhloo, and A. Abdolali, "Design of frequency selective band stop shield using analytical method," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 14, No. 2, 217-228, 2015.
doi:10.1590/2179-10742015v14i2536

20. Shaik, V. and K. Shambavi, "An ultra-thin non-resonant class of frequency selective surface for X band applications," Progress In Electromagnetics Research M, Vol. 96, 9-20, 2020.
doi:10.2528/PIERM20062501

21. Syed, I. S., Y. Ranga, L. Matekovits, K. P. Esselle, and S. G. Hay, "A single-layer frequency-selective surface for ultrawideband electromagnetic shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1404-1411, 2014.
doi:10.1109/TEMC.2014.2316288

22. Da Silva Segundo, F. C. G. and A. L. P. S. Campos, "Compact frequency selective surface with dual band response for WLAN applications," Microwave and Optical Technology Letters, Vol. 57, No. 2, 265-268, 2015.
doi:10.1002/mop.28830

23. Sohail, S. I., "Wi-Fi transmission and multi-band shielding using single-layer frequency selective surface," IEEE International Symposium on Antennas and Propagation (APSURSI), 963-964, June 2016.
doi:10.1109/APS.2016.7696190

24. Paul, G. S., K. Mandal, and A. Lalbakhsh, "Single-layer ultra-wide stop-band frequency selective surface using interconnected square rings," AEU-International Journal of Electronics and Communications, Vol. 132, 153630, 2021.
doi:10.1016/j.aeue.2021.153630

25. Abbasi, S., J. Nourinia, C. Ghobadi, M. Karamirad, and B. Mohammadi, "A sub-wavelength polarization sensitive band-stop FSS with wide angular response for X-and Ku-bands," AEU- International Journal of Electronics and Communications, Vol. 89, 85-91, 2018.
doi:10.1016/j.aeue.2018.03.018