Vol. 101
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-12-07
Compact Dual-Band SIW Bandpass Filter Using CSRR and DGS Structure Resonators
By
Progress In Electromagnetics Research Letters, Vol. 101, 79-87, 2021
Abstract
In this paper, a Substrate Integrated Waveguide (SIW) band pass filter loaded with a square Complementary Split Ring Resonator (CSRR) etched with Defected Ground Structure (DGS) is proposed. SIW is a promising candidate for the design and development of various microwave and millimeter wave components useful in communication systems. Due to the evanescent mode propagation and TE10 mode of the cavity, dual band (5.57/7.84 GHz) filtering is achieved with a 3-dB fractional bandwidth (FBW) of 6.8% and 4.1% respectively. The dual bands achieve a low insertion loss of 1.8 dB and 2 dB respectively. Cursor head DGS improves the out of band rejection to a greater level. The configuration is investigated with its corresponding circuit and simulated using Computer Simulation Technology (CST) software. The prototype is fabricated using a Rogers substrate with εr of 3.5 and tested. This prototype finds its application in C band satellite communication systems. The measured results are consistent with the simulated ones.
Citation
Gopalakrishnan Soundarya, and Nagarajan Gunavathi, "Compact Dual-Band SIW Bandpass Filter Using CSRR and DGS Structure Resonators," Progress In Electromagnetics Research Letters, Vol. 101, 79-87, 2021.
doi:10.2528/PIERL21091301
References

1. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820

2. Ye, C. S., Y. K. Su, M. H. Weng, et al. "Design of a compact CPW bandpass filter used for UWB application," Microwave and Optical Technology Letters, Vol. 51, No. 2, 298-300, 2009.
doi:10.1002/mop.24028

3. Gunavathi, N. and D. Sriram Kumar, "CPW-fed monopole antenna with reduced radiation hazards towards human head using metallic thin-wire mesh for 802.11ac application," Microwave and Optical Technology Letters,, Vol. 57, No. 11, 2684-2687, 2015.
doi:10.1002/mop.29411

4. Gunavathi, N. and D. Sriram Kumar, "Estimation of resonant frequency and bandwidth of compact unilateral coplanar waveguide-fed Ag shaped monopole antennas using artificial neural network," Microwave and Optical Technology Letters, Vol. 57, No. 2, 337-342, 2015.
doi:10.1002/mop.28838

5. Gunavathi, N. and D. Sriram Kumar, "Miniaturized unilateral coplanar waveguide-fed asymmetric planar antenna with reduced radiation hazards for 802.11ac application," Microwave and Optical Technology Letters, Vol. 58, No. 2, 337-342, 2016.
doi:10.1002/mop.29599

6. Debnath, P. and S. Chatterjee, "Substrate integrated waveguide antennas and arrays," 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech), 1-6, 2017.

7. Chen, X. P. and K. Wu, "Substrate integrated waveguide filters: Design techniques and structure innovations," IEEE Microwave Magazine, Vol. 15, No. 6, 121-133, 2014.
doi:10.1109/MMM.2014.2332886

8. Doghri, A., T. Djera, A. Ghiotto, and K. Wu, "Substrate integrated waveguide directional couplers for compact three-dimensional integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 1, 209-219, 2015.
doi:10.1109/TMTT.2014.2376560

9. Khan, A. A. and M. K. Mandal, "Miniaturized Substrate Integrated Waveguide (SIW) power dividers," IEEE Microwave Wireless Components Letters, Vol. 26, No. 11, 888-890, 2016.
doi:10.1109/LMWC.2016.2615005

10. Baena, J. D., J. Bonache, F. Martin, et al. "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

11. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microwave Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

12. Rajalakshmi, P. and N. Gunavathi, "Gain enhancement of cross shaped patch antenna for IEEE 802.11ax Wi-Fi applications," Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018.
doi:10.2528/PIERL18091401

13. Park, J. I., C. S. Kim, J. Kim, et al. "Modeling of a photonic bandgap and its application for the low-pass filter design," Asia Paci c Microwave Conference APMC'99 Microwaves Enter the 21st Century. Conference Proceedings (Cat. No.99TH8473), Vol. 2, 331-334, 1999.
doi:10.1109/APMC.1999.829865

14. Wu, Y. D., G. H. Li, W. Yang, and T. Mou, "A novel dual-band SIW filter with high selectivity," Progress In Electromagnetics Research Letters, Vol. 60, 81-88, 2016.
doi:10.2528/PIERL16032401

15. Rezaee, M. and A. R. Attari, "A novel dual mode dual band SIW filter," 2014 44th European Microwave Conference (EuMC), 853-856, 2014.
doi:10.1109/EuMC.2014.6986569

16. Wsx, H. and Y. Wu, "Compact SIW dual-band bandpass filter using novel dual-resonance quasi- SIW-transmission-line-structure resonators," The Journal of Engineering, Vol. 2016, No. 8, 291-293, 2016.
doi:10.1049/joe.2016.0199

17. Zhang, H., W. Kang, and W. Wu, "Miniaturized dual-band SIW filters using E-shaped slotlines with controllable center frequencies," IEEE Microwave Wireless Components Letters, Vol. 28, No. 4, 311-313, 2018.
doi:10.1109/LMWC.2018.2811251

18. Shen, W., W. Y. Yin, and X. W. Sun, "Miniaturized dual-band substrate integrated waveguide filter with controllable bandwidths," IEEE Microwave Wireless Components Letters, Vol. 21, No. 8, 418-420, 2011.
doi:10.1109/LMWC.2011.2158412

19. Fathi, P., Z. Atlasbaf, and K. Forooraghi, "Compact dual-wideband bandpass filter using CSRR based extended right/left-handed transmission line," Progress In Electromagnetics Research C, Vol. 81, 21-30, 2018.
doi:10.2528/PIERC17100206

20. Li, W., Z. Tang, and X. Cao, "Design of a SIW bandpass filter using defected ground structure with CSRRs," Active and Passive Electronic Components, Vol. 2017, No. 1, 2017.

21. Mohammadi, P. and S. Demir, "Loss reduction in substrate integrated waveguide structures," Progress In Electromagnetics Research C, Vol. 46, 125-133, 2014.

22. Cassivi, Y., L. Perregrini, P. Arcioni, et al. "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microwave Wireless Components Letters, Vol. 12, No. 9, 333-335, 2002.
doi:10.1109/LMWC.2002.803188

23. Soundarya, G. and N. Gunavathi, "Low loss and high-power substrate integrated waveguide for high speed circuits," Microwave Journal, Vol. 63, No. 4, 1-7, 2020.

24. Zhang, Q. L., W. Y. Yin, S. He, and L. S. Wu, "Evanescent-mode Substrate Integrated Waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307

25. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2018527, 1-22, 2017.

26. Chang, I. and B. Lee, "Design of defected ground structures for harmonic control of active microstrip antenna," IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), Vol. 2, 852-855, 2002.
doi:10.1109/APS.2002.1016779