Vol. 106
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-24
Synthesis of Wideband Reconfigurable Array Antennas for Monopulse Radar Applications
By
Progress In Electromagnetics Research M, Vol. 106, 179-189, 2021
Abstract
A new approach to the bandwidth maximization of reconfigurable antenna arrays for monopulse radar applications is proposed and tested. The provided radiating systems allow switching the radiation behavior from sum to difference patterns (and vice versa) while sharing the excitation amplitudes of a user-decided set of radiating elements. Furthermore, the proposed design procedure guarantees the maximum possible bandwidth performance once the overall antenna size, the desired beamwidth, sidelobe level, and slope in the target direction of the generated power patterns are fixed. The synthesis problem is cast and solved as a sequence of convex programming optimizations, and hence the maximization of performances is attained with advantages in terms of computational times as well as convergence to the global optimum. The given theory is supported by numerical experiments including arrays with ultra-wideband performances.
Citation
Le Trong Phuoc Bui, Nicola Anselmi, Giada Maria Battaglia, Tommaso Isernia, Paolo Rocca, and Andrea Francesco Morabito, "Synthesis of Wideband Reconfigurable Array Antennas for Monopulse Radar Applications," Progress In Electromagnetics Research M, Vol. 106, 179-189, 2021.
doi:10.2528/PIERM21090905
References

1. Ren, Y., J. Wang, D. C. Hu, and N. Zhang, "Horn-based circular polarized antenna array with a compact feeding for Ka-band monopulse antenna," Progress In Electromagnetics Research, Vol. 142, 291-308, 2013.
doi:10.2528/PIER13052014

2. Oliveri, G. and L. Poli, "Synthesis of monopulse sub-arrayed linear and planar array antennas with optimized sidelobes," Progress In Electromagnetics Research, Vol. 99, 109-129, 2009.
doi:10.2528/PIER09092510

3. Morabito, A. F. and P. Rocca, "Reducing the number of elements in phase-only reconfigurable arrays generating sum and difference patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1338-1341, 2015.
doi:10.1109/LAWP.2015.2404939

4. Ares, F., J. A. Rodriguez, E. Moreno, and S. R. Rengarajan, "Optimal compromise among sum and difference patterns," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 11, 1543-1555, 1996.
doi:10.1163/156939396X00919

5. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Optimization of the difference patterns for monopulse antennas by a hybrid real/integer coded differential evolution method," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 372-376, 2005.
doi:10.1109/TAP.2004.838788

6. Manica, L., P. Rocca, M. Benedetti, and A. Massa, "A fast graph-searching algorithm enabling the efficient synthesis of sub-arrayed planar monopulse antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 652-663, Mar. 2009.
doi:10.1109/TAP.2009.2013423

7. Morabito, A. F. and P. Rocca, "Optimal synthesis of sum and difference patterns with arbitrary sidelobes subject to common excitations constraints," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 623-626, 2010.
doi:10.1109/LAWP.2010.2053832

8. Rocca, P. and A. F. Morabito, "Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1048-1058, 2015.
doi:10.1109/TAP.2014.2386359

9. Morabito, A. F., A. R. Lagana, and T. Isernia, "Optimizing power transmission in given target areas in the presence of protection requirements," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 44-47, 2015.
doi:10.1109/LAWP.2014.2354514

10. Leonardi, O., M. G. Pavone, G. Sorbello, A. F. Morabito, and T. Isernia, "Compact single-layer circularly polarized antenna for short-range communication systems," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1843-1846, 2014.
doi:10.1002/mop.28453

11. Palmeri, R., M. T. Bevacqua, A. F. Morabito, and T. Isernia, "Design of artificial-material-based antennas using inverse scattering techniques," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7076-7090, 2018.
doi:10.1109/TAP.2018.2871707

12. Battaglia, G. M., A. F. Morabito, R. Palmeri, and T. Isernia, "Constrained focusing of vector fields intensity in near zone and/or complex scenarios as a low-dimensional global optimization," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 15, 1977-1989, 2020.
doi:10.1080/09205071.2020.1801521

13. Battaglia, G. M., G. G. Bellizzi, A. F. Morabito, G. Sorbello, and T. Isernia, "A general effective approach to the synthesis of shaped beams for arbitrary fixed-geometry arrays," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2404-2422, 2019.
doi:10.1080/09205071.2019.1683472

14. Morabito, A. F., R. Palmeri, V. A. Morabito, A. R. Laganà, and T. Isernia, "Single-surface phaseless characterization of antennas via hierarchically ordered optimizations," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 461-474, 2019.
doi:10.1109/TAP.2018.2877270

15. Morabito, A. F., A. Di Carlo, L. Di Donato, T. Isernia, and G. Sorbello, "Extending spectral factorization to array pattern synthesis including sparseness, mutual coupling, and mounting-platform effects," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4548-4559, 2019.
doi:10.1109/TAP.2019.2905977

16. Nikkhah, M. R., M. Hiranandani, and A. A. Kishk, "Rotman lens design with wideband DRA array," Progress In Electromagnetics Research, Vol. 169, 45-57, 2020.
doi:10.2528/PIER20050801

17. Chen, Y., S. Yang, and Z. P. Nie, "A novel wideband antenna array with tightly coupled octagonal ring elements," Progress In Electromagnetics Research, Vol. 124, 55-70, 2012.
doi:10.2528/PIER11121312

18. Lee, W. S., K. S. Oh, and J. W. Yu, "A wideband planar monopole antenna array with circular polarized and band-notched characteristics," Progress In Electromagnetics Research, Vol. 128, 381-398, 2012.
doi:10.2528/PIER12040307

19. Liu, P., Y. Sun, T. Liu, Q. Li, and X. Wang, "Wideband 10-port MIMO antenna array for 5G metal-frame smartphone applications," Progress In Electromagnetics Research C, Vol. 104, 229-240, 2020.
doi:10.2528/PIERC20071606

20. Zheng, Y., M. Gao, and X. Zhao, "A novel patch array antenna with wideband and dual sense circular polarization characteristics for WiMAX & WLAN applications," Progress In Electromagnetics Research C, Vol. 99, 123-132, 2020.
doi:10.2528/PIERC19111703

21. Bui, L. T. P., N. Anselmi, T. Isernia, P. Rocca, and A. F. Morabito, "On bandwidth maximization of fixed-geometry arrays through convex programming," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 5, 581-600, 2020.
doi:10.1080/09205071.2020.1724832

22. Isernia, T. and G. Panariello, "Optimal focusing of scalar fields subject to arbitrary upper bounds," Electronics Letters, Vol. 34, No. 2, 162-164, 1998.
doi:10.1049/el:19980212

23. Bucci, O. M., C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 3, 351-359, 1998.
doi:10.1109/8.662654

24. Capek, M., L. Jelinek, and P. Hazdra, "On the functional relation between quality factor and fractional bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2787-2790, 2015.
doi:10.1109/TAP.2015.2414472

25. Allen, B., T. Brown, K. Schwieger, E. Zimmermann, W. Q. Malik, D. J. Edwards, L. Ouvry, and I. Oppermann, "Ultrawideband: Applications, technology and future perspectives," Proceedings of the International Workshop on Convergent Technologies (IWCT), Oulu, Finland, Jun. 6-10, 2005.

26. Bevelacqua, P. J. and C. A. Balanis, "Geometry and weight optimization for minimizing sidelobes in wideband planar arrays," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1285-1289, 2009.
doi:10.1109/TAP.2009.2015853

27. Morabito, A. F., A. R. Laganà, and L. Di Donato, "Satellite multibeam coverage of earth: Innovative solutions and optimal synthesis of aperture fields," Progress In Electromagnetics Research, Vol. 156, 135-144, 2016.
doi:10.2528/PIER16061505

28. Mauro, G. S., G. Castorina, A. F. Morabito, L. Di Donato, and G. Sorbello, "Effects of lossy background and rebars on antennas embedded in concrete structures," Microwave and Optical Technology Letters, Vol. 58, 2653-2656, 2016.
doi:10.1002/mop.30111

29. Battaglia, G. M., A. F. Morabito, G. Sorbello, and T. Isernia, "Mask-constrained power synthesis of large and arbitrary arrays as a few-samples global optimization," Progress In Electromagnetics Research C, Vol. 98, 69-81, 2020.
doi:10.2528/PIERC19082904

30. CVX Research, Inc. "CVX: Matlab software for discipline convex programming,", Version 2.0 Beta, Sep. 2012, http://cvxr.com/cvx.