1. Zhao, W.-J., J. L.-W. Li, and K. Xiao, "Analysis of radiation characteristics of conformal microstrip arrays using adaptive integral method," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 1176-1181, 2012.
doi:10.1109/TAP.2011.2173135
2. Li, J. L.-W., Y.-N. Li, T.-S. Yeo, J. R. Mosig, and O. J. F. Martin, "Addendum: ``A broadband and high-gain metamaterial microstrip antenna''," Appl. Phys. Lett., Vol. 96, 164101, 2010; Appl. Phys. Lett., Vol. 99, 159901, 2011.
doi:10.1063/1.3396984
3. Abdulhasan, R. A., R. Alias, K. N. Ramli, F. C. Seman, and R. A. Abd-Alhameed, "High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging," Int. J. RF Microw. Comput.-Aided Eng., Vol. 29, No. 8, Art. No. e21757, 2019.
4. Zhao, W.-J., L.-W. Li, and K. Xiao, "Analysis of electromagnetic scattering and radiation from finite microstrip structures using an EFIE-PMCHWT formulation," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2468-2473, 2010.
doi:10.1109/TAP.2010.2048867
5. Yuan, N., T. S. Yeo, X. C. Nie, Y. B. Gan, and L.-W. Li, "Analysis of probe-fed conformal microstrip antennas on finite ground plane and substrate," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 554-563, 2006.
doi:10.1109/TAP.2005.863115
6. Yin, W.-Y., X.-T. Dong, J. F. Mao, and L.-W. Li, "Average power handling capability of finite-ground thin film microstrip lines over ultrawide frequency ranges," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 10, 715-717, 2005.
doi:10.1109/LMWC.2005.856829
7. Gao, S.-C., L.-W. Li, T.-S. Yeo, and M.-S. Leong, "A broad-band dual-polarized microstrip patch antenna with aperture coupling," IEEE Trans. Antennas Propag., Vol. 51, No. 4, 898-900, 2003.
doi:10.1109/TAP.2003.811080
8. Yuan, N., T.-S. Yeo, X. C. Nie, and L.-W. Li, "A fast analysis of scattering and radiation of large microstrip antenna arrays," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2218-2226, 2003. A correction is also made here (appearing in IEEE T-AP, Vol. 52, No. 7, 1921, Jul. 2004.).
doi:10.1109/TAP.2003.811082
9. Tahir, F. A., T. Arshad, S. Ullah, and J. A. Flint, "A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum," Microw. Opt. Technol. Lett., Vol. 59, No. 10, 2698-2704, Oct. 2017.
doi:10.1002/mop.30789
10. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305
11. Yuan, Y., X. Xi, and Y. Zhao, "Compact UWB FSS reflector for antenna gain enhancement," IET Microw., Antennas Propag., Vol. 13, No. 10, 1749-1755, Aug. 2019.
doi:10.1049/iet-map.2019.0083
12. Rezaee, P., M. Tayarani, and R. Knöchel, "Active learning method for the determination of coupling factor and external Q in microstrip filter design," Progress In Electromagnetics Research, Vol. 120, 459-479, 2011.
doi:10.2528/PIER11071901
13. Al-Gburi, J. A., I. B. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, Vol. 8, 92697-92707, 2020.
14. Asimakis, N. P., I. S. Karanasiou, and N. K. Uzunoglu, "Non-invasive microwave radiometric system for intracranial applications: A study using the conformal L-notch microstrip patch antenna," Progress In Electromagnetics Research, Vol. 117, 83-101, 2011.
doi:10.2528/PIER10122208
15. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ANN for K/Ku band applications," 2021 8th Int. Conf. Electr. Electron. Eng. ICEEE 2021, 2021.
16. Nakmouche, M. F., H. Taher, D. E. Fawzy, and A. M. M. A. Allam, "Development of a wideband substrate integrated waveguide bandpass filter using H-slotted DGS," The 6th IEEE Conference on Antenna Measurements & Applications (CAMA), Oct. 2019.
17. Nakmoucheand, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IoT terminals design," The 6th International Conference on Image and Signal Processing and Their Applications, Nov. 2019.
18. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, H. Taher, and M. F. A. Sree, "Dual band SIW patch antenna based on H-slotted DGS for Ku band application," The 7th IEEE International Conference on Electrical and Electronics Engineering, Apr. 2020.
19. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770
20. Sakran, F. and Y. Neve-Oz, "Absorbing frequency-selective surface for the mm wave range," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2649-2655, 2008.
doi:10.1109/TAP.2008.924701
21. Vardaxoglou, J. C., Frequency Selective Surfaces: Analysis and Design, Wiley, 1997.
22. Kim, J. H., C.-H. Ahn, and J.-K. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 1164-1167, Jan. 2016.
doi:10.1109/TAP.2016.2518650
23. Sarkhel, A. and S. R. B. Chaudhuri, "Enhanced-gain printed slot antenna using an electric metasurface superstrate," Appl. Phys. A, Vol. 122, 934, 2016.
doi:10.1007/s00339-016-0464-2
24. Fernandes, E. M. F., M. W. B. da Silva, L. da Silva Briggs, A. L. P. de Siqueira Campos, H. X. de Araújo, I. R. S. Casella, C. E. Capovilla, V. P. R. M. Souza, and L. J. de Matos, "2.4-5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement," AEU International Journal of Electronics and Communications, Vol. 108, 235-241, 2019.
doi:10.1016/j.aeue.2019.06.021
25. Tilak, G. B. G., S. K. Kotamraju, B. T. P. Madhav, K. Ch. Sri Kavya, and M. Venkateswara Rao, "Dual sensed high gain heart shaped monopole antenna with planar artificial magnetic conductor," Journal of Engineering Science and Technology, Jun. 2020.
26. Zhai, H., K. Zhang, S. Yang, and D. Feng, "A low-profile dual-band dual-polarized antenna with an AMC surface for WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2692-2695, 2017.
doi:10.1109/LAWP.2017.2741465
27. Liu, Q., H. Liu, W. He, and S. He, "A low-profile dual-band dual-polarized antenna with an AMC reflector for 5G communications," IEEE Access, Vol. 8, 24072-24080, 2020.
doi:10.1109/ACCESS.2020.2970473
28. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, D. B. Lin, and M. F. A. Sree, "Development of H-slotted DGS based dual band antenna using ANN for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021.
29. El Misilmani, H., T. Naous, and S. Al Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," International Journal of RF and Microwave Computer-Aided Engineering, 2020.
30. Kumar, R., P. Kumar, S. Singh, and R. Vijay, "Fast and accurate synthesis of frequency reconfigurable slot antenna using back propagation network," AEU - Int. J. Electron. Commun., Vol. 112, 152962, 2019.
doi:10.1016/j.aeue.2019.152962
31. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microw., Antennas Propag., Vol. 12, No. 4, 627-635, Mar. 2018.
doi:10.1049/iet-map.2017.0652
32. Jiang, Z. H., Z. Cui, T. Yue, Y. Zhu, and D. H. Werner, "Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 4, 920-932, Aug. 2017.
doi:10.1109/TBCAS.2017.2671841
33. Abbasi, M. A. B., S. S. Nikolaou, M. A. Antoniades, M. N. Stevanovic, and P. Vryonides, "Compact EBG-backed planar monopole for BAN wearable applications," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 453-463, Feb. 2017.
doi:10.1109/TAP.2016.2635588
34. Jiang, Z. H., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body area network devices," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4021-4030, Aug. 2014.
doi:10.1109/TAP.2014.2327650
35. Raa, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 524-531, Feb. 2013.
doi:10.1109/TAP.2012.2223449
36. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structure for high-gain inkjet-printed antennas on lossy paper substrate," IEEE Antennas Wireless Propag. Lett., Vol. 12, 76-79, 2013.
doi:10.1109/LAWP.2013.2240251
37. Ashyap, A. Y. I., et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2550-2553, 2017.
doi:10.1109/LAWP.2017.2732355
38. Poffelie, L. A. Y., P. J. Soh, S. Yan, and G. A. E. Vandenbosch, "A highfidelity all-textile UWB antenna with low back radiation for off-body WBAN applications," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 757-760, Feb. 2016.
doi:10.1109/TAP.2015.2510035
39. Simorangkir, R. B. V. B., A. Kiourti, and K. P. Esselle, "UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 493-496, Mar. 2018.
doi:10.1109/LAWP.2018.2797251