Vol. 106
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-07
Research on Pneumothorax Detection Based on Magneto-Acousto-Electrical Tomography
By
Progress In Electromagnetics Research M, Vol. 106, 71-82, 2021
Abstract
Pneumothorax can cause chest tightness, chest pain, and respiratory failure, which can be life-threatening in severe cases. Therefore, early diagnosis and treatment of pneumothorax are crucial. Magneto-Acousto-Electrical Tomography (MAET)is an imaging technique in which ultrasound and electromagnetism are mutually coupled. It has the advantages of high spatial resolution and high image contrast. In this paper, we use MAET to study porous and air-containing lung tissue. We first simulate the characteristics of the MAET signal as the degree of pneumothorax increases. The relationship between the size of the ultrasonic probe and the size of the pneumothorax was discussed. The simulation results show that the reflection and attenuation values of the MAET voltage signals increase as the pneumothorax size gradually increases, regardless of whether the ultrasound transducer size is larger or smaller than the pneumothorax size. Finally, the MAET experimental platform was built to validate the simulation results of MAET signals. The results of the experiment and simulation are consistent with each other. The research of this paper has a certain reference value for the detection of pneumothorax using MAET.
Citation
Cailian Li, Yuanyuan Li, and Guo-Qiang Liu, "Research on Pneumothorax Detection Based on Magneto-Acousto-Electrical Tomography," Progress In Electromagnetics Research M, Vol. 106, 71-82, 2021.
doi:10.2528/PIERM21082804
References

1. Baumann, M. H. and C. Strange, "The clinician's perspective on pneumothorax management," CHEST, Vol. 112, No. 3, 822-828, 1997.
doi:10.1378/chest.112.3.822

2. Seremetis, M. G., "The management of spontaneous pneumothorax," CHEST, Vol. 57, No. 1, 65-68, 1970.
doi:10.1378/chest.57.1.65

3. Tschopp, J. M., R. Rami-Porta, M. Noppen, et al. "Management of spontaneous pneumothorax: State of the art," European Respiratory Journal, Vol. 28, No. 3, 637, 2006.
doi:10.1183/09031936.06.00014206

4. Volpicelli, G., M. Elbarbary, M. Blaivas, et al. "International evidence-based recommendations for point-of-care lung ultrasound," Intensive Care Medicine, Vol. 38, No. 4, 577-591, 2012.
doi:10.1007/s00134-012-2513-4

5. Wernecke, K., M. Galanski, P. E. Peters, et al. "Pneumothorax: Evaluation by ultrasound-preliminary results," Journal of Thoracic Imaging, Vol. 2, No. 2, 76-78, 1987.
doi:10.1097/00005382-198704000-00015

6. Li, Y., J. X. Song, et al. "Three-dimensional model of conductivity imaging for Magneto-Acousto-Electrical Tomography," Journal of Applied Physics, Vol. 127, No. 10, 104701, Mar. 2020.
doi:10.1063/1.5139600

7. Kaboutari, K., A. O. Tetik, et al. "Data acquisition system for MAET with magnetic field measurements," Physics in Medicine & Biology, Vol. 64, 110516, 2019.

8. Li, Y., J. X. Song, et al. "The experimental study of mouse liver in Magneto-Acousto-Electrical Tomography by scan mode," Physics in Medicine and Biology, Vol. 65, No. 21, 215024, 2020.
doi:10.1088/1361-6560/abb4bb

9. Han, W., S. Jatin, and S. Robert, "Hall effect imaging," IEEE Transactions on Biomedical Engineering, Vol. 45, No. 1, 119-124, 1998.
doi:10.1109/10.650364

10. Haider, S., A. Hrbek, and Y. Xu, "Magneto-Acousto-Electrical Tomography: A potential method for imaging current density and electrical impedance," Physiological Measurement, Vol. 29, No. 6, S41-50, 2008.
doi:10.1088/0967-3334/29/6/S04

11. Zeng, X., G. Liu, H. Xia, et al. "An acoustic characteristic study of Magneto-Acousto-Electrical Tomography," International Conference on Biomedical Engineering and Informatics, 95-98, 2010.

12. Graslandmongrain, P., J. M. Mari, J. Y. Chapelon, et al. "Lorentz force electrical impedance tomography," IRBM, Vol. 34, No. 4, 357-360, 2013.
doi:10.1016/j.irbm.2013.08.002

13. Guo, L., G. Liu, and H. Xia, "Magneto-Acousto-Electrical Tomography with magnetic induction for conductivity reconstruction," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 9, 2114-2124, 2015.
doi:10.1109/TBME.2014.2382562

14. Zengin, R. and N. G. Gencer, "Lorentz force electrical impedance tomography using magnetic field measurements," Physics in Medicine & Biology, Vol. 61, No. 16, 5887-5905, 2016.
doi:10.1088/0031-9155/61/16/5887

15. Kunyansky, L., C. P. Ingram, and R. S. Witte, "Rotational Magneto-Acousto-Electric Tomography (MAET): Theory and experimental validation," Physics in Medicine & Biology, Vol. 62, No. 8, 3025, 2017.
doi:10.1088/1361-6560/aa6222

16. Zhou, Y., Z. Yu, Q. Ma, et al. "Noninvasive treatment-efficacy evaluation for HIFU therapy based on Magneto-Acousto-Electrical Tomography," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 3, 666-674, 2019.
doi:10.1109/TBME.2018.2853594

17. Yu, Z. F., Y. Zhou, Y. Z. Li, Q. Y. Ma, G. P. Guo, and J. Tu, "Performance improvement of Magneto-Acousto-Electrical Tomography for biological tissues with sinusoid-Barker coded excitation," Chinese Physics B, Vol. 27, No. 9, 094302, 2018.
doi:10.1088/1674-1056/27/9/094302

18. Li, Y., G. Liu, et al. "Numerical simulations and experimental study of Magneto-Acousto-Electrical Tomography with plane transducer," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-4, 2018.
doi:10.1109/TMAG.2018.2800462

19. Dai, M., X. Chen, T. Sun, et al. "A 2D Magneto-Acousto-Electrical Tomography method to detect conductivity variation using multifocus image method," Sensors, Vol. 18, No. 7, 2231, 2018.
doi:10.3390/s18072231

20. Sun, Z. S., G. Q. Liu, and H. Xia, "Lorentz force electrical impedance tomography using pulse compression technique," Chinese Physics B, Vol. 26, No. 12, 124302, 2017.
doi:10.1088/1674-1056/26/12/124302