Vol. 105
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-10-10
Performance Comparison of Spoke Array Fault Tolerant PM Vernier Rim Driven Machine with Different Numbers of Flux Modulation Poles
By
Progress In Electromagnetics Research M, Vol. 105, 55-65, 2021
Abstract
In this paper, the effect of flux modulation pole (FMP) number on the performance of a spoke array fault tolerant permanent magnet vernier rim driven machine (SA-FTPMV-RDM) is studied. Firstly, a hybrid stator is adopted in this machine in which armature teeth and isolation teeth are arranged alternatively, and the winding type is single-layer fractional slot concentrated winding (SL-FSCW). Spoke array magnet is employed in the rotor of the machine to achieve flux focusing effect. Then the parameter scanning method is used to optimize the FMP pitch ratio, isolation tooth width ratio, FMP height, and permanent magnet thickness under different numbers of FMPs. It is concluded that there is an optimal FMP number for 12 slots SA-FTPMV-RDM to maximize the torque. Finally, the electromagnetic performances of the optimized machines with different number of FMP are compared by using the finite element analysis (FEA). The results show that the machine with the optimal number of FMPs has the highest torque density and efficiency, strong fault tolerance, but relatively large torque ripple.
Citation
Tianhuai Qiao, Jingwei Zhu, and Xiaoyi Wang, "Performance Comparison of Spoke Array Fault Tolerant PM Vernier Rim Driven Machine with Different Numbers of Flux Modulation Poles," Progress In Electromagnetics Research M, Vol. 105, 55-65, 2021.
doi:10.2528/PIERM21082606
References

1. Yahamoto, T., M. Izumi, M. Yokoyama, and K. Umemoto, "Electric propulsion motor development for commercial ships in Japan," Proceedings of the IEEE, Vol. 103, No. 12, 2333-2343, 2015.
doi:10.1109/JPROC.2015.2495134

2. Yan, X., X. Liang, W. Ouyang, et al. "A review of progress and applications of ship shaft-less rim-driven thrusters," Ocean Engineering, Vol. 144, 142-156, 2017.
doi:10.1016/j.oceaneng.2017.08.045

3. Li, Y., B. Song, Z. Mao, and W. Tian, "Analysis and optimization of the electromagnetic performance of a novel stator modular ring drive thruster motor," Energies, Vol. 11, No. 6, 1-23, 2018.

4. Hassannia, A. and A. Darabi, "Design and performance analysis of superconducting rim-driven synchronous motors for marine propulsion," IEEE Transactions on Applied Superconductivity, Vol. 24, No. 1, 40-46, 2014.
doi:10.1109/TASC.2013.2280346

5. Ojaghlu, P. and A. Vahedi, "Specification and design of ring winding axial flux motor for rim-driven thruster of ship electric propulsion," IEEE Transactions on Vehicular Technology, Vol. 68, No. 2, 1318-1326, 2019.
doi:10.1109/TVT.2018.2888841

6. Wu, F. and A. M. El Refaie, "Permanent magnet vernier machine: A review," IET Electric Power Applications, Vol. 13, No. 2, 127-137, 2019.
doi:10.1049/iet-epa.2018.5474

7. Liu, C. and K. T. Chau, "Electromagnetic design and analysis of double-rotor flux-modulated permanent-magnet machines," Progress In Electromagnetics Research, Vol. 131, 81-97, 2012.
doi:10.2528/PIER12060605

8. Wu, L., R. Qu, D. Li, et al. "Influence of pole ratio and winding pole numbers on performance and optimal design parameters of surface permanent-magnet vernier machines," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3707-3715, 2015.
doi:10.1109/TIA.2015.2426148

9. Xu, L., G. Liu, W. Zhao, and J. Ji, "Hybrid excited vernier machines with all excitation sources on the stator for electric vehicles," Progress In Electromagnetics Research M, Vol. 46, 113-123, 2016.
doi:10.2528/PIERM15120305

10. Toba, A. and T. A. Lipo, "Generic torque-maximizing design methodology of surface permanent-magnet vernier machine," IEEE Transactions on Industry Applications, Vol. 36, No. 6, 1539-1546, 2000.
doi:10.1109/28.887204

11. Zhou, H., W. Tao, C. Zhou, et al. "Consequent pole permanent magnet vernier machine with asymmetric air-gap field distribution," IEEE Access, Vol. 7, 109340-109348, 2019.
doi:10.1109/ACCESS.2019.2933657

12. Liu, G., M. Shao, W. Zhao, J. Ji, Q. Chen, and Q. Feng, "Modeling and analysis of halbach magnetized permanent-magnet machine by using lumped parameter magnetic circuit method," Progress In Electromagnetics Research M, Vol. 41, 177-188, 2015.
doi:10.2528/PIERM15012204

13. Liu, W. and T. A. Lipo, "Analysis of consequent pole spoke type vernier permanent magnet machine with alternating flux barrier design," IEEE Transactions on Industry Applications, Vol. 54, No. 6, 5918-5929, 2018.
doi:10.1109/TIA.2018.2856579

14. Kim, B. and T. A. Lipo, "Analysis of a PM vernier motor with spoke structure," IEEE Transactions on Industry Applications, Vol. 52, No. 1, 217-225, 2016.
doi:10.1109/TIA.2015.2477798

15. Zou, T., D. Li, R. Qu, et al. "Advanced high torque density PM vernier machine with multiple working harmonics," IEEE Transactions on Industry Applications, Vol. 53, No. 6, 5295-5304, 2017.
doi:10.1109/TIA.2017.2724505

16. Xu, L., W. Zhao, G. Liu, and C. Song, "Design optimization of a spoke-type permanent-magnet vernier machine for torque density and power factor improvements," IEEE Transactions on Vehicular Technology, Vol. 68, No. 4, 3446-3456, 2019.
doi:10.1109/TVT.2019.2902729