Vol. 100
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-19
A Low-Profile Wideband BPF for Ku Band Applications
By
Progress In Electromagnetics Research Letters, Vol. 100, 127-135, 2021
Abstract
A low-profile, compact size and light weight wide band BPF prototype is presented for satellite communication applications (Ku-band). The proposed wideband BPF satisfies the International Telecommunication Union's (ITU) region 3 spectrum requirement. Direct broadcast service (DBS) and fixed satellite service (FSS) in transmitting mode, respectively, employ the frequency band 11.41-12.92 GHz. The proposed filter offers an impedance bandwidth of 1.5 GHz and group delay of 0.2 ns. The proposed wideband BPF is fabricated, and various parameters such as return loss, insertion loss, group delay and quality factor are measured. Miniaturization of filter size reveals the filter's suitability to use on smaller platforms with smaller surfaces.
Citation
Ambati Navya, Govardhani Immadi, and Madhavareddy Venkata Narayana, "A Low-Profile Wideband BPF for Ku Band Applications," Progress In Electromagnetics Research Letters, Vol. 100, 127-135, 2021.
doi:10.2528/PIERL21082101
References

1. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley and Sons, Hoboken, NJ, USA, 2004.

2. Richard, J. C., M. K. Chandra, and R. M. Raafat, Microwave Filters for Communication Systems Fundamentals, Design and Applications, John Wiley and Sons, Hoboken, NJ, USA, 2017.

3. Ian, H., "Theory and Design of Microwave Filters," IET Electromagnetic Waves Series 48, IET, London, UK, 2006.

4. Al-Yasir, Y. I. A., N. Ojaroudi Parchin, A. M. Abdul Khaleq, M. S. Bakr, and R. A. Abd-Alhameed, "A survey of differential-fed microstrip bandpass filters: Recent techniques and challenges," Sensors, 2356, 2020.
doi:10.3390/s20082356

5. Hou, Z., C. Liu, B. Zhang, and R. Song, "Dual-/Tri-wideband bandpass filter with high selectivity and adjustable passband for 5G mid-band mobile communications," Electronics, 205, 2020.
doi:10.3390/electronics9020205

6. Guan, Y., Y. Wu, and M. M. Tentzeris, "A bidirectional absorptive common-mode filter based on interdigitated microstrip coupled lines for 5G green communications," IEEE Access, 20759-20769, 2020.
doi:10.1109/ACCESS.2020.2968931

7. Al-Yasir, Y. I. A., N. O. Parchin, A. Abdul Khaleq, K. Hameed, M. Al-Sadoon, and R. Abd-Alhameed, "Design, simulation and implementation of very compact dual-band microstrip bandpass filter for 4G and 5G applications," Proceedings of the 16th International Conference on Synthesis, Modelling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 41-44, Lausanne, Switzerland, July 2019.

8. Yang, Q., X. Xiong, Y. Wu, L. Wang, and H. Xiao, "Design of microstrip tapped-hairpin dual-band pass filter for Ku-band application," 2010 International Conference on Microwave and Millimeter Wave Technology, 772-774, Chengdu, 2018.

9. Sheen, J., Y. Cheng, and W. Liu, "Ku-band bandpass filter design with compact size and broad stopband by pHEMT process," 2019 Photonics & Electromagnetics Research Symposium --- Spring (PIERS --- Spring), 1022-1026, Rome, Italy, June 17-20, 2019.

10. Panda, C. S., R. Nayak, and S. K. Behera, "Design and analysis of a compact Substrate Integrated Waveguide bandpass filter for Ku band applications," 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 1-5, Coimbatore, 2020.

11. Ghatak, R., P. Sarkar, R. K. Mishra, and D. R. Poddar, "A compact UWB bandpass filter with embedded SIR as band notch structure," IEEE Microwave Wireless Component Letters, 261-263, 2011.
doi:10.1109/LMWC.2011.2128302

12. Liu, H., T. Liu, Q. Zhang, B. Ren, and P. Wen, "Compact balanced bandpass filter design using asymmetric SIR pairs and spoof surface plasmon polariton feeding structure," IEEE Microwave Wireless Component Letters, 987-989, 2018.
doi:10.1109/LMWC.2018.2873209

13. Yuceer, M., "A reconfigurable microwave combline filter," IEEE Transactions on Circuits Systems II Express Briefs, 84-88, 2016.
doi:10.1109/TCSII.2015.2504010

14. Cho, Y., H. Baek, H. Lee, and S. Yun, "A dual-band combline bandpass filter loaded by lumped series resonators," IEEE Microwave Wireless Component Letters, 626-628, 2009.
doi:10.1109/LMWC.2009.2029737

15. Velez, P., J. Naqui, A. Fernandez-Prieto, M. Duran-Sindreu, J. Bonache, J. Martel, F. Medina, and F. Martin, "Differential bandpass filter with common-mode suppression based on open split ring resonators and open complementary split ring resonators," IEEE Microwave Wireless Component Letters, 22-24, 2013.
doi:10.1109/LMWC.2012.2236083