Vol. 100
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-09-24
Application of High-Frequency Dielectric Logging Technology for Shale Oil Production
By
Progress In Electromagnetics Research Letters, Vol. 100, 53-61, 2021
Abstract
Shale oil and gas are unconventional oil and gas resources that can be used as alternative energy sources in the future. Shale reservoirs are the new growth point for the exploitation of oil and gas and development of China's oil and gas industry. The heterogeneity of the shale stratum determines the complexity of its mining. Accurate identification and detection of its oil-bearing characteristics are principal tasks in the oil shale deposit evaluation and economically exploitable interval division. Dielectric logging cannot rely on traditional resistivity logging curves, and it is not affected by the formation water salinity, which can provide the formation water porosity. Combined with other types of logging, it can effectively evaluate the formation oil saturation. In this study, we applied a new type of high-frequency dielectric logging tool in the production of shale oil, developed by the 22nd Institute of China Electronics Technology Group Corporation, based on different dielectric constants of oil, rock matrix, and water. We first introduced the principle of dielectric logging and the major advantages of the dielectric logging tool, and further proposed a new complex refractive index model with clay correction and explained the processing methods, which improved the accuracy of calculating the formation water saturation. Furthermore, the developed technology was applied and evaluated in the Songliao Basin.
Citation
Chen Li, Shaogui Deng, Zhiqiang Li, Yiren Fan, Jingjing Zhang, and Jutao Yang, "Application of High-Frequency Dielectric Logging Technology for Shale Oil Production," Progress In Electromagnetics Research Letters, Vol. 100, 53-61, 2021.
doi:10.2528/PIERL21081403
References

1. Thomas, M., N. Pidgeon, and M. Bradshaw, "Shale development in the US and Canada: A review of engagement practice," The Extractive Industries and Society, Vol. 5, No. 4, 557-569, 2018.
doi:10.1016/j.exis.2018.07.011

2. Hu, S., W. Zhao, L. Hou, Z. Yang, R. Zhu, S. Wu, B. Bai, and J. Xu, "Development potential and technical strategy of continental shale oil in China," Petroleum Exploration and Development, Vol. 47, No. 4, 877-887, 2020.
doi:10.1016/S1876-3804(20)60103-3

3. Zhang, P., D. Misch, H. Fei, N. Kostoglou, R. F. Sachsenhofer, L. Zhaojun, M. Qingtao, and A. Bechtel, "Porosity evolution in organic matter-rich shales (Qingshankou Fm.; Songliao Basin, NE China): Implications for shale oil retention," Marine and Petroleum Geology, Vol. 130, 105139, 2021.
doi:10.1016/j.marpetgeo.2021.105139

4. Liu, B., J. Sun, Y. Zhang, J. He, X. Fu, L. Yang, J. Xing, and X. Zhao, "Reservoir space and enrichment model of shale oil in the rst member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China," Petroleum Exploration and Development, Vol. 48, No. 3, 608-624, 2021.
doi:10.1016/S1876-3804(21)60049-6

5. Heidari, Z. and C. Torres-Verdin, "Quantitative method for estimating total organic carbon and porosity and for diagnosing mineral constituents from well logs in shale-gas formations," SPWLA 52nd Annual Logging Symposium, Colorado Springs, Colorado, 2011.

6. Grau, J., M. Herron, and S. Herron, Organic Carbon Content of the Green River Oil Shale from Nuclear Spectroscopy Logs, Colorado School of Mines, Golden, Colorado, 2010.

7. Gale, J. F. W., R. M. Reed, and J. Holder, "Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments," AAPG Bulletin, Vol. 91, No. 4, 603-622, 2007.
doi:10.1306/11010606061

8. Lewis, R., D. Ingraham, and M. Pearcy, "New evaluation techniques for gas shale reservoirs," Reservoir Symposium, Schlumberger, 2004.

9. Dunn, J. M., "Lateral wave propagation in a three-layered medium," Radio Science, Vol. 21, 787-796, 1986.
doi:10.1029/RS021i005p00787

10. Freedman, R. and J. P. Vogiatzis, "Theory of microwave dielectric constant logging using the electromagnetic wave propagation method," Geophysics, Vol. 44, 969-986, 1979.
doi:10.1190/1.1440989

11. Wharton, R. P., R. N. Rau, and D. L. Best, "Electromagnetic propagation logging: Advances in technique and interpretation," SPE 9267, 1, 12, Dallas, Texas, 1980.

12. Calvert, T. J. and L. E. Wells, "Electromagnetic propagation: A new dimension in logging," SPE 6542, 32-43, Bakers eld, California, 1977.

13. Song, Y.-L., G. Chen, and M. Chang, "Study and application of electromagnetic logging in Daqing oil eld," Petroleum Geological Development in Daqing, Vol. 16, No. 4, 1997.

14. Schmitt, D. P., A. Al-Harbi, P. Saldungaray, R. Akkurt, and T. Zhang, "Revisiting dielectric logging in Saudi Arabia: Recent experiences and applications in development and exploration wells," SPE/DGS, 1-18, Al-Khobar, Saudi Arabia, 2011.

15. Freeman, D. W. and K. C. Henry, "Improved saturation determination with EPT," SPE 11466, Manama, Bahrain, 1983.

16. Al-Yaarubi, A., R. Al-Mjeni, J. Bildstein, K. Al-Ani, M. Mikhasev, F. Legendre, and M. Hizem, "Applications of dielectric dispersion logging in oil-based mud," SPWLA 55th Annual Logging Symposium, 18-22, Abu Dhabi, United Arab Emirates, 2014.

17. Berryman, J. G., "Mixture theories for rock properties," Rock Physics and Phase Relations | A Handbook of Physical Constants, 205-228, 1995.

18. Passey, Q. R., S. Creaney, J. B. Kulla, F. J. Moretti, and J. D. Stroud, "A practical model for organic richness from porosity and resistivity logs," AAPG Bulletin, Vol. 74, No. 12, 1777-1794, 1990.
doi:10.1109/36.3041

19. Chew, W. C., "Modeling of the dielectric logging tool at high frequencies: Theory," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 4, 382-387, 1988.

20. Donadille, J. M. and O. Faivre, "Water complex permittivity model for dielectric logging," SPE 172566-MS, Manama, Bahrain, 2015.