Vol. 105
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-09-30
A New Coupled-Line Based Dual-Band Branch-Line Coupler with Port-Extensions
By
Progress In Electromagnetics Research M, Vol. 105, 21-30, 2021
Abstract
In this paper, a coupled-line based dual-band branch-line coupler with port-extensions is presented. The configuration of the coupler consists of a single coupled-lines section, two transmission lines, and an easy to analyze L-section impedance matching network at all four ports of the coupler. A detailed theoretical analysis is carried out to obtain the closed-form design equations to determine the design parameters of the coupling structure. It is observed that the proposed dual-band coupler can support wide band-ratio and arbitrary power division. To validate the proposed design concept, a prototype working at 0.9 GHz and 1.8 GHz is fabricated on a 60 mil Rogers 4003C substrate exhibiting excellent match between the simulated and measured results.
Citation
Rakibul Islam, Asif Iftekhar Omi, Mohammad A. Maktoomi, Christine Zakzewski, and Praveen Kumar Sekhar, "A New Coupled-Line Based Dual-Band Branch-Line Coupler with Port-Extensions," Progress In Electromagnetics Research M, Vol. 105, 21-30, 2021.
doi:10.2528/PIERM21081203
References

1. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.

2. Islam, R., M. H. Maktoomi, Y. Gu, and B. Arigong, "Concurrent dual-band microstrip line Hilbert transformer for spectrum aggregation real-time analog signal processing," IEEE MTT-S Int. Microw. Symp. Dig., 900-903, Los Angeles, CA, USA, Aug. 2020.

3. Islam, R., M. H. Maktoomi, H. Ren, and B. Arigong, "Spectrum aggregation dual-band and real-time RF/microwave analog signal processing from microstrip line high-frequency Hilbert transformer," IEEE Trans. Microw. Theory Techn., Vol. 1, No. 1, 1, 2021.

4. Cheng, K. M. and F. L. Wong, "A novel approach to the design and implementation of dual-band compact planar 90 branch-line coupler," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 11, 2458-2462, 2004.
doi:10.1109/TMTT.2004.837151

5. Wong, F. L. and K. M. Cheng, "A novel planar branch-line coupler design for dual-band applications," IEEE MTT-S Int. Dig., 903-906, Jun. 2004.

6. Zaidi, A. M., S. A. Imam, B. Kanaujia, and K. Rambabu, "A new equal power quadrature branch-line coupler for dual-band applications," Progress In Electromagnetics Research Letters, Vol. 74, 61-67, 2018.
doi:10.2528/PIERL18011018

7. Park, M. J. and B. Lee, "Dual-band, cross coupled branch-line coupler," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 10, 655-657, 2005.
doi:10.1109/LMWC.2005.856683

8. Cao, Y., J. Wen, H. Hong, and J. Liu, "Design of planar dual-band branch-line coupler with π-shaped coupled-lines," Progress In Electromagnetics Research Letters, Vol. 55, 113-120, 2015.
doi:10.2528/PIERL15061902

9. Maktoomi, M. A., M. S. Hashmi, and F. M. Ghannouchi, "A dual-band port-extended branch-line coupler and mitigation of the band-ratio and power division limitations," IEEE Trans. Compon. Packag. Manuf. Techn., Vol. 7, No. 8, 1313-1323, 2017.
doi:10.1109/TCPMT.2017.2661864

10. Kim, H., B. Lee, and M. Park, "Dual-band branch-line coupler with port extensions," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 3, 651-655, 2010.
doi:10.1109/TMTT.2010.2040342

11. Wu, Y., S. Y. Zheng, S. W. Leung, Y. Liu, and Q. Xue, "An analytical design method for a novel dual-band unequal coupler with four arbitrary terminated resistances," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5509-5516, Oct. 2014.

12. Cheng, K. M. and S. Yeung, "A novel dual-band 3-dB branch-line coupler design with controllable bandwidths," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 10, 3055-3061, 2012.
doi:10.1109/TMTT.2012.2210437

13. Collado, C., A. Grau, and F. D. Flaviis, "Dual-band planar quadrature hybrid with enhanced bandwidth response," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 1, 180-188, 2006.
doi:10.1109/TMTT.2005.860306

14. Jung, S. C., R. Negra, and F. M. Ghannouchi, "A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 12, 2950-2953, 2008.
doi:10.1109/TMTT.2008.2007323

15. Zaidi, A. M., M. T. Beg, B. K. Kanaujia, K. Srivastava, and K. Rambabu, "A dual band branch-line coupler with wide frequency ratio," IEEE Access, Vol. 7, 25046-25052, 2019.
doi:10.1109/ACCESS.2019.2896646

16. Wang, X., W. Yin, and K. Wu, "A dual-band coupled-line coupler with an arbitrary coupling coefficient," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 4, 945-951, 2012.
doi:10.1109/TMTT.2012.2185949

17. Zheng, S. Y., Y. Wu, Y. Li, Y. Liu, and Y. Long, "Dual-band hybrid coupler with arbitrary power division ratios over the two bands," IEEE Trans. Compon. Packag. Manuf. Techn., Vol. 4, No. 8, 1347-1358, 2014.
doi:10.1109/TCPMT.2014.2329705

18. Riblet, G. P., "A directional coupler with very flat coupling," IEEE Trans. Microw. Theory Techn., Vol. 26, No. 2, 70-74, 1978.
doi:10.1109/TMTT.1978.1129315