Vol. 106
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-21
Analyzing Effects of Satellite Attitude and Speed Errors on Ocean Current Retrieval for a Doppler Scatterometer
By
Progress In Electromagnetics Research M, Vol. 106, 139-152, 2021
Abstract
Doppler-based techniques for ocean current measurement have been demonstrated in the past years. The Doppler shift of the ocean backscattering from space-borne microwave instruments not only includes the contributions from ocean current but also includes satellite movement and the wind-wave induced. Geometrical Doppler shift induced by satellite movement is highly dependent on the accuracies of satellite attitude determinations and speed. In this study, we derive the detailed formulas to investigate how satellite attitude determination and speed errors affect ocean current retrieval for a Doppler scatterometer through the spatial correlation coefficient phase and the transformation between orbital coordinate system and satellite-carried local level frame (LLF). Our results show that ocean current speed retrieval accuracy is sensitive to the accuracies of satellite attitude determination and speed, and compared with the satellite speed error, satellite attitude error has a larger impact on ocean current retrieval. By comparisons, with the same attitude accuracy for satellite roll, pitch, and yaw, ocean current speed error induced by the roll error is found to be the smallest. With an accuracy of 0.001° satellite attitude determination and 0.01 m/s for satellite speed accuracy, the total ocean current speed retrieval error induced by satellite attitude determinations (including roll, pitch, and yaw) and speed errors reaches a maximum value of 16.37 cm/s at side-looking direction and a minimum value of 11.05 cm/s at forward and backward-looking directions. Our results confirm the importance of satellite attitude determination accuracy for future ocean current mission and will also be useful to motivate the design of future Doppler measurement instruments.
Citation
Yuanjing Miao, Xiaolong Dong, and Di Zhu, "Analyzing Effects of Satellite Attitude and Speed Errors on Ocean Current Retrieval for a Doppler Scatterometer," Progress In Electromagnetics Research M, Vol. 106, 139-152, 2021.
doi:10.2528/PIERM21080601
References

1. Song, X., "The importance of including sea surface current when estimating air-sea turbulent heat fluxes and wind stress in the gulf stream region," Journal of Atmospheric and Oceanic Technology, Vol. 38, No. 1, 119-138, 2021.
doi:10.1175/JTECH-D-20-0094.1

2. Shi, Q. and M. A. Bourassa, "Coupling ocean currents and waves with wind stress over the gulf stream," Remote Sensing, Vol. 11, No. 12, 1476, 2019. [Online]. Available: https://www.mdpi.com/2072-4292/11/12/1476.
doi:10.3390/rs11121476

3. Bao, Q., X. Dong, D. Zhu, S. Lang, and X. Xu, "The feasibility of ocean surface current measurement using pencil-beam rotating scatterometer," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 7, 3441-3451, 2015, doi: 10.1109/JSTARS.2015.2414451.
doi:10.1109/JSTARS.2015.2414451

4. Rodriguez, E., et al. "Estimating ocean vector winds and currents using a Ka-band pencil-beam doppler scatterometer," Remote Sensing, Vol. 10, 576, 2018, doi: 10.3390/rs10040576.
doi:10.3390/rs10040576

5. Miao, Y., X. Dong, Q. Bao, and D. Zhu, "Perspective of a Ku-Ka dual-frequency scatterometer for simultaneous wide-swath ocean surface wind and current measurement," Remote Sensing, Vol. 10, 1042, 2018, doi: 10.3390/rs10071042.
doi:10.3390/rs10071042

6. Ardhuin, F., et al. "Measuring currents, ice drift, and waves from space: The Sea surface KInematics Multiscale monitoring (SKIM) concept," Ocean Sci., Vol. 14, No. 3, 337-354, 2018, doi: 10.5194/os-14-337-2018.
doi:10.5194/os-14-337-2018

7. Rodríguez, E., M. Bourassa, D. Chelton, J. T. Farrar, D. Long, D. Perkovic-Martin, and R. Samelson, "The winds and currents mission concept," Frontiers in Marine Science, Vol. 6, 438, 2019.
doi:10.3389/fmars.2019.00438

8. Du, Y., X. Dong, X. Jiang, Y. Zhang, and S. Peng, "Ocean Surface Current Multiscale Observation Mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature," Progress In Oceanography, Vol. 193, No. 3, 102531, 2021.
doi:10.1016/j.pocean.2021.102531

9. Chapron, B., F. Collard, and F. Ardhuin, "Direct measurements of ocean surface velocity from space: Interpretation and validation," Journal of Geophysical Research: Oceans, Vol. 110, C7, 2005, doi: 10.1029/2004JC002809.

10. Mouche, A. A., F. Collard, B. Chapron, K. Dagestad, G. Guitton, J. A. Johannessen, V. Kerbaol, and M. W. Hansen, "On the use of doppler shift for sea surface wind retrieval from SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 7, 2901-2909, 2012, doi: 10.1109/TGRS.2011.2174998.
doi:10.1109/TGRS.2011.2174998

11. Yurovsky, Y., V. Kudryavtsev, S. A. Grodsky, and B. Chapron, "Sea surface Ka-band doppler measurements: Analysis and model development," Remote. Sens., Vol. 11, 839, 2019.
doi:10.3390/rs11070839

12. Miao, Y., X. Dong, M. A. Bourassa, and D. Zhu, "Effects of different wave spectra on wind-wave induced doppler shift estimates," IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 5705-5708, IEEE, 2020.
doi:10.1109/IGARSS39084.2020.9323413

13. Miao, Y., X. Dong, M. A. Bourassa, and D. Zhu, "Effects of ocean wave directional spectra on doppler retrievals of ocean surface current," IEEE Transactions on Geoscience and Remote Sensing, 2021.

14. Elyouncha, A., L. E. B. Eriksson, R. Romeiser, and L. M. H. Ulander, "Measurements of sea surface currents in the baltic sea region using spaceborne along-track InSAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 11, 8584-8599, 2019, doi: 10.1109/TGRS.2019.2921705.
doi:10.1109/TGRS.2019.2921705

15. Hansen, M. W., F. Collard, K.-F. Dagestad, J. A. Johannessen, P. Fabry, and B. Chapron, "Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 3582-3592, 2011.
doi:10.1109/TGRS.2011.2153864

16. Bolandi, H., M. Haghparast, F. Saberi, B. Vaghei, and S. Smailzadeh, "Satellite attitude determination and contol," Measurement and Control, Vol. 45, No. 5, 151-157, 2012.
doi:10.1177/002029401204500505

17. Bao, Q., M. Lin, Y. Zhang, X. Dong, S. Lang, and P. Gong, "Ocean surface current inversion method for a doppler scatterometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 11, 6505-6516, 2017.
doi:10.1109/TGRS.2017.2728824

18. Bamler, R. and P. Hartl, "Synthetic aperture radar interferometry," Inverse Problems, Vol. 14, No. 4, R1, 1998.
doi:10.1088/0266-5611/14/4/001

19. Grewal, M. S., A. P. Andrews, and C. G. Bartone, Global Navigation Satellite Systems, Inertial Navigation, and Integration, John Wiley & Sons, 2020.
doi:10.1002/9781119547860

20. Noureldin, A., T. B. Karamat, and J. Georgy, Fundamentals of Inertial Navigation, Satellite-based Positioning and Their Integration, 2013.
doi:10.1007/978-3-642-30466-8

21. Howley, B., "AA236: Overview of spacecraft attitude determination and control,", Lockheed Martin Space Systems Company, 2005.