Vol. 100
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-01
Terahertz off -Axis Focus Polarization Converter Based on Metasurface
By
Progress In Electromagnetics Research Letters, Vol. 100, 91-97, 2021
Abstract
In order to satisfy the requirements of terahertz time-domain spectrum system under specific circumstances, an off-axis focus reflective polarization converter in terahertz band is proposed. By combining the principle of phase compensation and phase gradient metasurface, a reflective array containing units is designed. The phase distribution along the metasurface is calculated through the principle of optical path reversibility. Geometric rotation and resonant frequency modulation constitute the phase variation of the unit, which can be superimposed on each other without interference. Compared with the conventional reflective polarization converter in terahertz band, the proposed one could deflect the normally incident terahertz wave while providing larger energy at the focus. The simulation results show that the proposed polarization converter has good performance in both polarization conversion and electromagnetic focus, which has significant practical application in numerous situations.
Citation
Bo Yin, Zhu Xu, and Yue Ma, "Terahertz off -Axis Focus Polarization Converter Based on Metasurface," Progress In Electromagnetics Research Letters, Vol. 100, 91-97, 2021.
doi:10.2528/PIERL21071802
References

1. Ling, F., et al. "A broadband tunable terahertz negative refractive index metamaterial," Scienti c Reports, Vol. 8, No. 1, 1-9, 2018.

2. Suzuki, T., et al. "Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband," Optics Express, Vol. 26, No. 7, 8314-8324, 2018.
doi:10.1364/OE.26.008314

3. Luo, H. and Y. Cheng, "Dual-band terahertz perfect metasurface absorber based on bi-layered all-dielectric resonator structure," Optical Materials, Vol. 96, 109279, 2019.
doi:10.1016/j.optmat.2019.109279

4. Tian, Y., et al. "High transmission focusing lenses based on ultrathin all-dielectric Huygens' metasurfaces," Optical Materials, Vol. 109, 110358, 2020.
doi:10.1016/j.optmat.2020.110358

5. Katrodiya, D., et al. "Metasurface based broadband solar absorber," Optical Materials, Vol. 89, 34-41, 2019.
doi:10.1016/j.optmat.2018.12.057

6. Khan, A. D., et al. "Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications," Optical Materials, Vol. 84, 195-198, 2018.
doi:10.1016/j.optmat.2018.07.009

7. Bashirpour, M., et al. "Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array," Optics & Laser Technology, Vol. 120, 105726, 2019.
doi:10.1016/j.optlastec.2019.105726

8. Li, J., et al. "Addressable metasurfaces for dynamic holography and optical information encryption," Science Advances, Vol. 4, No. 6, eaar6768, 2018.
doi:10.1126/sciadv.aar6768

9. Grady, N. K., et al. "Terahertz metamaterials for linear polarization conversion and anomalous refraction,", Vol. 340, No. 6138, 1304-1307, 2013.

10. Chen, X., et al. "High-efficiency compact circularly polarized microstrip antenna with wide beamwidth for airborne communication," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1518-1521, 2016.
doi:10.1109/LAWP.2016.2517068

11. Xu, K.-D., et al. "Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips," Optics Express, Vol. 28, No. 8, 2020, doi:10.1364/OE.390835.

12. Wen, D., et al. "Metasurface for characterization of the polarization state of light," Optics Express, Vol. 23, No. 8, 10272-10281, 2015.
doi:10.1364/OE.23.010272

13. Zheng, Q., et al. "Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase," Scienti c Reports, Vol. 7, No. 1, 1-13, 2017.
doi:10.1038/s41598-016-0028-x

14. Xu, J., et al. "Ultra-broadband linear polarization converter based on anisotropic metasurface," Optics Express, Vol. 26, No. 20, 26235-26241, 2018.
doi:10.1364/OE.26.026235

15. Luo, F., et al. "Multiband terahertz re ective polarizer based on asymmetric L-shaped split-ring-resonators metasurface," 2016 11th International Symposium on Antennas, Propagation and EM Theory, ISAPE). IEEE, 2016.

16. Zou, M., M. Su, and H. Yu, "Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial," Optical Materials, Vol. 107, 110062, 2020.
doi:10.1016/j.optmat.2020.110062

17. Gandhi, C., P. R. Babu, and K. Senthilnathan, "Designing abroadband terahertz half-wave plate using an anisotropic metasurface," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 40, No. 5, 500-515, 2019.
doi:10.1007/s10762-019-00575-3

18. Cao, H., et al. "Dual-band polarization angle independent 90 polarization rotator using chiral metamaterial," IEICE Electronics Express, Vol. 13, No. 15, 20160583-20160583, 2016.
doi:10.1587/elex.13.20160583

19. Wang, Z., et al. "Huygens metasurface holograms with the modulation of focal energy distribution," Advanced Optical Materials, Vol. 6, No. 12, 1800121, 2018.
doi:10.1002/adom.201800121

20. Yu, N., et al. "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

21. Yu, J.-B., et al. "High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators," Acta PhysicaSinica, Vol. 64, No. 17, 2015.

22. Zhuang, Y.-Q., et al. "Design of re ective linear-circular polarization converter based on phase gradient metasurface," Acta PhysicaSinica, Vol. 65, No. 15, 2016.

23. Chakravarty, S. and D. Mitra, "A Novel Ultra-Wideband and Multifunctional Re ective Polarization Converter," 2020 IEEE 17th India Council International Conference, INDICON). IEEE, 2020.

24. Yin, B. and M. Yue, "Broadband terahertz polarization converter with anomalous reflection based on phase gradient metasurface," Optics Communications, Prepublish, 2021, doi: 10.1016/J.OPTCOM.2021.126996.

25. Shi, H., et al. "Gradient metasurface with both polarization-controlled directional surface wave coupling and anomalous reflection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 104-107, 2014.

26. Zhang, P., et al. "Design, measurement and analysis of near- eld focusing re ective metasurface for dual-polarization and multi-focus wireless power transfer," IEEE Access, Vol. 7, 110387-110399, 2019.
doi:10.1109/ACCESS.2019.2934135