Vol. 100
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-20
Design and Fabrication of a Liquid Crystal-Based 94 GHz 360° Phase Shifter for Reflectarray Antennas
By
Progress In Electromagnetics Research Letters, Vol. 100, 145-150, 2021
Abstract
In this work, we propose a liquid crystal (LC)-based double-dipole phase shifter. By manipulating the electric field, we change the resonant frequency and phase of the electromagnetic wave by deflecting the orientation of LC molecules. We made the LC-based device with a 30 × 30 array of two parallel unequal dipoles on a Quartz substrate. The substrate has an area and thickness of 4×4 cm2 and 480 μm, respectively. The experimental results show that the phase shift of 0°-385.4° is achieved at 94 GHz by changing the applied bias voltage on the LC layer from 0 V to 8.4 V. The phase shift is greater than 360° in the range 91.75-94.85 GHz. When the LC molecules are most significantly affected by the electric field, the maximum precision of phase shift is 4.08° with a bias voltage of 2 mV.
Citation
Rongxin Mao, Junjie Xu, Xianping Li, Shuangyuan Sun, Xiangxiang Li, Jun Yang, Zhiping Yin, Guangsheng Deng, and Hongbo Lu, "Design and Fabrication of a Liquid Crystal-Based 94 GHz 360° Phase Shifter for Reflectarray Antennas," Progress In Electromagnetics Research Letters, Vol. 100, 145-150, 2021.
doi:10.2528/PIERL21071301
References

1. Ojaroudiparchin, N., M. Shen, S. Zhang, et al. "A switchable 3D-coverage phased array antenna package for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1747-1750, 2016.
doi:10.1109/LAWP.2016.2532607

2. Ngamjanyaporn, P., M. Krairiksh, and M. Bialkowski, "Combating interference in an indoor wireless-communication system using a phased-array antenna with switched-beam elements," Microwave and Optical Technology Letters, Vol. 45, No. 5, 411-415, Jun. 2005.
doi:10.1002/mop.20839

3. Alhalabi, R. A. and G. M. Rebeiz, "High-Efficiency angled-Dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, Oct. 2008.
doi:10.1109/TAP.2008.929506

4. Vendik, O. and M. Parnes, "A phase shifter with one tunable component for a re ectarray antenna," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 53-65, Aug. 2008.
doi:10.1109/MAP.2008.4653662

5. Mahmoud, K. R., A. Baz, W. Alhakami, et al. "The performance of circularly polarized phased sub-array antennas for 5G laptop devices investigation the radiation effects," Progress In Electromagnetics Research C, Vol. 110, 267-283, May 2021.
doi:10.2528/PIERC21012005

6. Nickel, M., A. Jimenez-Saez, P. Agrawal, et al. "Ridge gap waveguide based liquid crystal phase shifter," IEEE Access, Vol. 8, 77833-77842, 2020.
doi:10.1109/ACCESS.2020.2989547

7. Ren, H., J. Shao, R. Zhou, et al. "Compact phased array antenna system based on dual-band operations," Microwave and Optical Technology Letters, Vol. 56, No. 6, 1391-1396, Jun. 2014.
doi:10.1002/mop.28343

8. Li, Y. and A. Abbosh, "Electronically controlled phasing element for single-layer recon figurable reflectarray," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 628-631, 2012.
doi:10.1109/LAWP.2012.2203290

9. Shen, Z. X., S. H. Zhou, S. J. Ge, et al. "Liquid crystal enabled dynamic cloaking of terahertz Fano resonators," Applied Physics Letters, Vol. 114, No. 4, 041106.1-041106.5, Jan. 2019.

10. Wang, J., H. Tian, Y. Wang, et al. "Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial," Optics Express, Vol. 26, No. 5, 5769-5776, Mar. 2018.
doi:10.1364/OE.26.005769

11. Perez-Palomino, G., M. Barba, J. A. Encinar, et al. "Design and demonstration of an electronically scanned re ectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3722-3727, Aug. 2015.
doi:10.1109/TAP.2015.2434421

12. Bildik, S., S. Dieter, C. Fritzsch, et al. "Recon gurable folded re ectarray antenna based upon liquid crystal technology," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 122-132, Jan. 2015.
doi:10.1109/TAP.2014.2367491

13. Lin, C. J., C. H. Lin, Y. T. Li, et al. "Electrically controlled liquid crystal phase grating for terahertz waves," IEEE Photonics Technology Letters, Vol. 21, No. 9-12, 730-732, May-Jun. 2009.

14. Luo, C. G., B. Deng, H. Q. Wang, et al. "High-resolution terahertz coded-aperture imaging for near- eld three-dimensional target," Applied Optics, Vol. 58, No. 12, 3293-3330, Apr. 2019.
doi:10.1364/AO.58.003293

15. Reese, R., E. Polat, H. Tesmer, et al. "Liquid crystal based dielectric waveguide phase shifters for phased arrays at W-band," IEEE Access, Vol. 7, 127032-127041, 2019.
doi:10.1109/ACCESS.2019.2939648

16. Hu, W., M. Y. Ismail, R. Cahill, et al. "Tunable liquid crystal re ectarray patch element," Electronics Letters, Vol. 42, No. 9, 509-511, Apr. 2006.
doi:10.1049/el:20060571

17. Perez-Palomino, G., R. Florencio, J. A. Encinar, et al. "Accurate and efficient modeling to calculate the voltage dependence of liquid crystal-based re ectarray cells," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2659-2668, May 2014.
doi:10.1109/TAP.2014.2308521

18. Zografopoulos, D. C. and R. Beccherelli, "Tunable terahertz shnet metamaterials based on thin nematic liquid crystal layers for fast switching," Scienti c Reports, Vol. 5, 13137, Aug. 2015.
doi:10.1038/srep13137

19. Yang, J., X. Chu, H. Gao, et al. "Fully electronically phase modulation of millimeter-wave via comb electrodes and liquid crystal," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 342-345, Mar. 2021.
doi:10.1109/LAWP.2021.3049870