Vol. 105
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-09-24
Ultra-Wideband RCS Reduction of Circular Polarization Slot Antenna Array Based on Polarization Conversion Structures and Frequency-Selective Rasorber
By
Progress In Electromagnetics Research M, Vol. 105, 9-20, 2021
Abstract
This paper proposes an absorption-transmission-absorption (A-T-A) type frequency-selective rasorber (FSR) with high selectivity that is loaded above a polarization conversion structure (PCS) and applied to a circular polarization (CP) slot antenna array for ultra-wideband radar cross section (RCS) reduction. Outside the operational frequency band (out-of-band) of the antenna, the energy of the incident electromagnetic (EM) wave is directly absorbed by the FSR, whereas from within the operational frequency band (in-band) of the antenna, the incident EM wave penetrates the FSR and irradiates it on the PCS placed on the lower layer of the FSR structure, which meets the phase cancellation condition and is diffused at the same time, thereby realizing the in-band RCS reduction. Due to the lower insertion loss in the passband, higher quality factor (Q value) in the transmission band, and wider absorption band, the proposed FSR can minimize the gain loss (only 0.2 dB) of the CP slot antenna array and widen the RCS reduction bandwidth to 135.5% (5-26 GHz). In addition, due to the central symmetry of the FSR and PCS structures, the CP slot antenna array has monostatic RCS reduction performance for both horizontally polarized (HP) and vertically polarized (VP) incoming waves.
Citation
Yu-Xing Zhang, Yong-Ling Ban, and Chow-Yen-Desmond Sim, "Ultra-Wideband RCS Reduction of Circular Polarization Slot Antenna Array Based on Polarization Conversion Structures and Frequency-Selective Rasorber," Progress In Electromagnetics Research M, Vol. 105, 9-20, 2021.
doi:10.2528/PIERM21071204
References

1. Pang, Y. Q., Y. F. Li, B. Y. Qu, M. B. Yan, J. F. Wang, S. B. Qu, and Z. Xu, "Wideband RCS reduction metasurface with a transmission window," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 7079-7087, Oct. 2020.
doi:10.1109/TAP.2020.2995429

2. Fan, Y., F. Wang, Y. F. Li, J. Q. Zhang, Y. J. Han, and B. Qu, "Low-RCS and high-gain circularly polarized metasurface antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7197-7203, Dec. 2019.
doi:10.1109/TAP.2019.2920355

3. Paquay, M., J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, Dec. 2007.
doi:10.1109/TAP.2007.910306

4. Zheng, J., J. Gao, Y. L. Zho, X. Y. Cao, H. Yang, S. J. Li, and T. Li, "Wideband gain enhancement and RCS reduction of Fabr-Perot resonator antenna with chessboard arranged metamaterial superstrate," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 590-599, Feb. 2018.
doi:10.1109/TAP.2017.2780896

5. Chen, W., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 263-2645, Jun. 2015.

6. Samadi, F. and A. Sebak, "Wideband, very low RCS engineered surface with a wide incident angle stability," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 180-1814, Mar. 2021.
doi:10.1109/TAP.2020.3015040

7. Su, J. X., Y. Lu, Y. Liu, Q. Yang, Z. R. Li, and J. M. Song, "A novel checker board metasurface based on optimized multielement phase cancellation for superwideband RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 709-7099, Dec. 2018.
doi:10.1109/TAP.2018.2870372

8. Zheng, J., J. Gao, X. Y. Cao, D. Yuan, and H. H. Yang, "Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 158-1585, 2015.

9. Han, Y., L. Zhu, Y. M. Bo, W. Q. Che, and B. Li, "Novel low-RCS circularly polarized antenna arrays via frequency selective absorber," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 287-296, Jan. 2020.
doi:10.1109/TAP.2019.2939845

10. Kundu, D., S. Baghel, A. Mohan, and A. Chakrabarty, "Design and analysis of printed lossy capacitive surface based ultrawideband low profile absorber," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3533-3538, May 2019.
doi:10.1109/TAP.2019.2902660

11. Liu, Y., Y. T. Jia, W. B. Zhang, and F. Li, "Wideband RCS reduction of a slot array antenna using a hybrid metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 364-3652, May 2020.

12. Costa, F. and A. Monorchio, "A frequency selective radom with wideband absorbing properties," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 274-2747, Jun. 2012.
doi:10.1109/TAP.2012.2194640

13. Luo, G. Q., W. L. Yu, Y. F. Yu, H. Y. Jin, K. K. Fan, and F. Zhu, "Broadband dual-polarized band-absorptive frequency selective rasorber using absorptive transmission/reflection surface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 12, 7969-7977, Dec. 2020.
doi:10.1109/TAP.2020.3000831

14. Ren, Y., W. Jiang, K. Z. Zhang, and X. Gong, "A high-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 85-856, May 2018.
doi:10.1109/LAWP.2018.2820015

15. Sang, D., Q. Chen, L. Ding, M. Guo, and Y. Q. Fu, "Design of checker board AMC structure for wideband RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2604-2612, Apr. 2019.
doi:10.1109/TAP.2019.2891657

16. Shang, Y. P., Z. X. Shen, and S. Q. Xiao, "Frequency-selective rasorber based on square-loop and crossdipole arrays," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5581-5589, Nov. 2014.
doi:10.1109/TAP.2014.2357427

17. Xia, J., F. Wei, T. Liu, L. Zhang, S. Guo, C. L. Li, S. W. Bie, and J. J. Jiang, "Design of a wideband absorption frequency selective rasorber based on double lossy layers," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5718-5723, Jul. 2020.
doi:10.1109/TAP.2019.2963585

18. Chen, Q., D. Sang, M. Guo, and Y. Q. Fu, "Frequency-selective rasorber with interabsorption band transparent window and interdigital resonator," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 4105-4114, Aug. 2018.
doi:10.1109/TAP.2018.2835671

19. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, "A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3291-3295, Jun. 2017.
doi:10.1109/TAP.2017.2694879

20. Han, Z. J., W. Song, and X. Q. Sheng, "Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1631-1634, Jan. 2017.
doi:10.1109/LAWP.2017.2658195

21. Pandit, S., A. Mohan, and P. Ray, "Low-RCS low-profile four-element MIMO antenna using polarization conversion metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2102-2106, Dec. 2020.
doi:10.1109/LAWP.2020.3023454

22. Zhang, W., Y. Liu, and Y. Jia, "Circularly polarized antenna array with low RCS using metasurface-inspired antenna units," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1453-1457, Jul. 2019.
doi:10.1109/LAWP.2019.2919716

23. Zhao, Y., X. Cao, J. Gao, L. Xu, X. Liu, and L. Cong, "Broadband low-RCS circularly polarized array using metasurface-based element," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1836-1839, 2017.